FINAL REPORT
Transient Faults in Computer Systems
NASA Grant No. NSG-1442

Gerald M. Masson
Principal Investigator

4l

"o
i

wm'l\ m
s Ll ol

g

i

FINAL REPORT PRty
Transient Faults in Computer Systems
NASA Grant No. NSG-1442

Gerald M. Masson
Principal Investigator
Department of Computer Science
The Johns Hopkins University
Baltimore, Maryland 21218-2694
Phone: (410) 516-7013
FAX: (410) 516-6134
Email: masson@cs.jhu.edu

Summary

We have developed by means of support from NASA Grant N5G-1442 a novel and powerful
technique particularly appropriate for the detection of errors caused by transient faults in computer
systems. The technique can be implemented in either software or hardware; the research conducted
thus far primarily has considered software implementations. The error detection technique we have
developed has the distinct advantage of having provably complete coverage of all errors caused by
transient faults that affect the output produced by the execution of a program. In other words, the ‘
technique does not have to be tuned to a particular error model to enhance error coverage. Also,
the correctness of the technique can be formally verified. -

When implemented in software, this new technique uses time and software redundancy and can

be outlined as follows. In the initial phase, a program is run to solve a problem and store the -

result. In addition, this program leaves behind a trail of data which we call a certification tratl In
the second phase, another program is run which solves the original problem again. This program,
however, has access to the certification trail left by the first program. Because of the availability
of the certification trail, the second phase can be performed by a less complex program and can
execute more quickly. In the final phase, the two results are compared and if they agree the results
are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is
that the second program must always generate either an error indication or a correct output even
when the certification trail it receives from the first program is incorrect. We have formalized the
certification trail approach to fault tolerance and have illustrated numerous realizations of it for
well-know and important problems. We have rigorously proven the correctness of the technique
for certain applications. We have shown cases in which the second phase can be run concurrently
with the first and act as a real-time monitor. We have compared the certification trail approach
to other approaches to error detection to demonstrate the significant conceptual and performance
advantages. -
This research has developed the foundation for an effective, low-overhead, software-based cer-
tification trail approach to real-time error detection resulting from transient fault phenomena. It
would be particularly appropriate at this time to examine the technique further in the context
of important and timely applications. For example, transient error phenomena caused by ioniz-
ing radiations in space or high-altitude avionics environments stand as a major obstacle to many

1

I

|3

i

applications of high performance microelectronics. The research reported in the following would
provide a framework for the development of “radiation-hardened software” that would permit the
utilization of high performance microelectronics in space and high-altitude avionics applications in
an efficient and cost effective manner.

In the following, seven papers are provided which together characterize the current state of the
most recent research conducted with support from NASA Grant NSG-1442:

1.

Certification of Computational Results, Gregory F. Sullivan, Dwight S. Wilson, Gerald M.

Masson.

. Ezperimental Evaluation of the Certification-Trail Method, Gregory F. Sullivan, Dwight S.

Wilson, Gerald M. Masson, Mamoru Itoh, Warren W. Smith, Jonathan §. Kay.

Certification Trails and Software Design for Testability, Gregory F. Sullivan, Dwight S. Wil-
son, Gerald M. Masson.

Ezperimental Evaluation of Certification Trails using Abstract Data Type Validation, Dwight
S. Wilson, Gregory F. Sullivan, Gerald M. Masson.

United States Patent, Method and Apparatus for Fault Tolerance, Patent No. 5,243,607, Sept.
7, 1993, United States Patent Office.

Using Certification Trails to Achieve Software Fault Tolerance, Gregory F. Sullivan, Gerald
M. Masson.

Certification Trails for Data Structures, Gregory F. Sullivan, Gerald M. Masson.

il

KLl

B

Nii i

First Execution

Certification Trail

Duplicate Compare

or Error

Second Execution

Figure 1: Certification trail method.

the software in addition to those caused by transient hardware faults and utilizes both time and
software redundancy. Errors caused by software faults are detected whenever the independently
written programs do not generate coincident errors.

A significant drawback to the above approaches is the overhead required. Either extra time
is required to run the algorithms serially on a single processor or extra hardware is required to
run them in parallel. The technique we will describe is designed to achieve similar types of error
detection capabilities while reducing the required resource overhead. The central idea, as illustrated
in Figure 1, is to modify the first algorithm so that it leaves behind a trail of data which we call a
certification trail. This data is chosen to allow the second algorithm to execute more quickly and/or
have a simpler structure than the first algorithm. As above, the outputs of the two executions are
compared and are considered correct only if they agree. Note, however, that we must be careful in
defining this method or else its error detection capability might be reduced by the introduction of
data dependency between the two algorithm executions. For example, suppose the first algorithm
execution contains an error which causes an incorrect output and an incorrect trail of data to be
generated. Further suppose that no error occurs during the execution of the second algorithm. It
appears possible that the execution of the second algorithm might use the incorrect trail to generate
an incorrect output which matches the incorrect output produced by the first algorithm. Intuitively,
we can regard the two executions as “adversaries.” The second execution must guard against an
incorrect certification trail “fooling” it into producing an incorrect output. The definitions we give
below exclude this possibility. They demand that the second execution either generates a correct
answer or signals the fact that an error has been detected in the certification trail.

2 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and discuss some aspects of
its realizations and uses.

Definition 2.1 A problem P is formalized as a relation, i.e., a set of ordered pairs. Let D be the
domain (that is, the set of inputs) of the relation P and let S be the range (that is, the set of
solutions) for the problem. We say an algorithm A solves a problem P iff for all d € D when d is
input to A then an s € S is output such that (d,s) € P.

PRECEDING PAGE BLANK NOT FILMED

l. ik

il

Il

=
==
famary

Definition 2.2 Let P : D — S be a problem. A solution to this problem using a certification
trail consists of two functions F; and F; with the following domains and ranges F; : D - Sx T
and F2: D x T — S U {error}. T is the set of certification trails. The functions must satisfy the
following two properties:

(1) for all d € D there exists s € S and there exists ¢t € T such that
Fy(d) = (s,t) and F;(d,t) = s and (d,s) € P
(2)foralde D and forallte T
either (F3(d,t) = s and (d, s) € P) or F3(d,t) = error.

We also require that F} and F; be implemented so that they map elements not in their respective
domains to the error symbol. The definitions above assure that the error detection capability of
the certification trail approach is comparable to that obtained with the simple time redundancy
approach discussed earlier. (That is, if transient hardware faults occur during only one of the
executions then either an error will be detected or the output will be correct.) It should be further
noted, however, that the examples to be considered will indicate that this approach can also save
overall execution time.

The certification trail approach also allows for the detection of faults in software. As in 2-
version programming, separate teams can write the algorithms for the first and second executions.
Note that the specification now must include precise information describing the generation and
use of the certification trail. Because of the additional data available to the second execution,
the specifications of the two phases can be very different; similarly, the two algorithms used to
implement the phases can be very different. (This will be illustrated in the convex hull example to
be considered later.) Alternatively, the two algorithms can be very similar, differing only in data
structure manipulations. (This will be illustrated in the shortest path example to be considered
later.) When significantly different algorithms are used, the probability that both algorithms will
contain or be affected by faults which generate matching errors should be reduced. When very
similar algorithms are used it is sometimes possible to save programming effort by sharing program
code. For example, the code implementing any data structures needed by the program might be
different, while the code that uses the data structure operations would be the same. This approach
is well suited for the creation of libraries of fault-tolerant data structures. While this reduces the
ability to detect errors in the software it does not change the ability to detect transient hardware
errors as discussed earlier. Furthermore, in situations like the above example, it is possible (perhaps
even probable) that the majority of software errors will be in the data structure implementation.
Thus the ability to detect software errors may not be reduced as much as first imagined.

Throughout this section we have assumed that our method is implemented with software, how-
ever, it is clearly possible to implement the method with assistance from dedicated hardware. It
is also possible to generalize the basic idea we have suggested. We discuss some of these gener-
alizations in a later section. Finally, we note that a wide variety of approaches to software fault
tolerance have been proposed and we contrast our method to the most closely related ideas in a
later section.

In the following two sections we illustrate the application of certification trails to three well-
known and significant problems in computer science: the convex hull problem, sorting, and the
shortest path problem. It should be stressed that the certification trail is not limited to these
problems. Rather, these algorithms have been selected for illustrative purposes.

/|
il

i

418

b |

ni
L.

g

Il

i

IS

[
fin

1

g4

3 Certification Trails for Convex Hulls

The convex hull problem is a fundamental one in computational geometry. Our certification trail
solution is based on a solution due to Graham [13] called Graham’s Scan. For basic definitions in
computational geometry see the text of Preparata and Shamos [20]. This text also illustrates some
statistical applications of convex hull computations. For simplicity in the following discussion we
will assume the points are in so called general position, i.e., no three points are co-linear. It is not
difficult to remove this restriction.

Definition 3.1 The convezr hull of a set of N points, S, in the Euclidean plane is defined as the
smallest convex polygon enclosing all the points. This polygon is unique and its vertices are a
subset of the points in S. It is specified by a counterclockwise sequence of its vertices.

The algorithm given below constructs the convex hull incrementally in a counterclockwise fash-
ion. Sometimes it is necessary for the algorithm to “backup” the construction by throwing some
vertices out and then continuing. The first step of the algorithm selects the point with minimum
x-coordinate (using minimum y-coordinate to break ties), and calls it p;. For each other point ¢
in § we compute the slope of the line p,g. Sort the points of § (except for p,) by this slope (since
the points are in general position, the slopes are distinct). Number these vertices ps,p3,...,pn-
It is not hard to show that after these three steps the points when taken in order, py,pa,...,Pn,
form a simple polygon; although this polygon might not be convex. It is possible to think of the
algorithm as removing points from this simple polygon until it becomes convex. This code below
performs this by “walking” through the vertices in order. The main FOR loop iteration adds points
to the polygon under construction. After a point is added, the inner WHILE loop checks the angle
formed by the addition of this point. (Note: We measure angles as follows: Given the three points
gm-1,4qm, Pk We measure the angle from ¢n_1gm t0 gmpP: in the clockwise direction.) If the angle
is not acute (i.e., it makes the the polygon non-convex), then the angle vertex (i.e., the preceding
point on the polygon) is removed. Note that this will change the preceding angle, which may
now be obtuse and should be eliminated. The WHILE loop terminates when an acute angle is
encountered. Figure 2 illustrates the construction of a convex hull using this algorithm. from the
hull.

When the main FOR loop is complete the convex hull has been constructed.

Algorithm CONVEXHULL(S)
Input: Set of points, S, in R?
Output: Counterclockwise sequence of points in R? which define convex hull of §
1 Let p; be the point with the smallest z coordinate (and smallest y to break ties)
2 For each point p (except p,) calculate the slope of the line through p, and p
3 Sort the points (except p;) from the smallest slope to the largest.
Call them pg,...,pn
4 qu:=p1; @:=p; 3:=p3; m=3
5 FORk=4ton DO
6 WHILE the angle formed by ¢m—1,qm, Pk is > 180 degrees DO
7
8

m:=m-1
END WHILE
9 m:=m+1
10 gm:=p
11 END FOR

12 FOR i = 1 to m DO, OUTPUT(¢;) END FOR

4

=2

[
| 1 il

NN

RTII VR 1§

Wi

Figure 2: Convex hull example.

END CONVEXHULL

First execution: To generate a certification trail for this algorithm, we rely on the property
that for each point eliminated by the WHILE loop in the code above, we can produce a triangle of
points in § containing the eliminated point.

Theorem 3.2 Let p, a, b, and ¢, be points in the plane such that no three are co-linear, p has the
smallest z-coordinate of the four points (and the smaller y-coordinate if another other point has the
same z-coordinate) slope(pa) < slope(pb) < slope(pc). If the angle abc is obtuse (measured in the
clockwise direction), then b is inside the triangle pac.

Proof: By the ordering of the slopes, b is inside the triangular wedge determined by the rays
pa and pe. Note that the line segments pa and pe are in the half plain z > p., and in at least one
case the inequality is strict, since no three points are co-linear. This implies that the angle apc (in
the clockwise direction) must be greater than 180 degrees. Since the angle abc is also obtuse, both
p and b must be on the same side of line @. Therefore, b is inside the triangle pac. |

Corollary 3.3 During ezecution of CONVEXHULL, if, after adding p:, the angle formed by
9m-1,qm, P is obtuse (measured in the clockwise direction), then g, is contained in the triangle
P1yqm-1, Pk-

Proof: slope(Pigm_1) < slope(P1gm) < slope(pipr). B

o In the first execution the code CONVEXHULL is used. The certification trail is generated by
- adding an output statement within the WHILE loop. Specifically, if an angle greater than 180
degrees is found in the WHILE loop test then the 4-tuple consisting of gm,gm-1,P1, P& is output to
the certification trail. The table below shows the 4-tuples of points that would be output by the
=~ algorithm when run on the example in Figure 2. The points in the table are given the same names
as in Figure 2. The final convex hull points ¢;,...,qm are also output to the certification trail.
Finally, the trail output does not consist of the actual points in R?. Instead, it consists of indices
- to the original input data. This means if the original data consists of sy, 33, ..., 3, then rather than
output the element in R? corresponding to s; the number i is output. If point coordinates were
output instead of these indices, the second execution would have to verify that the points on the
- trail are members of S.

Point not on convex hull Three surrounding points

P PP, P2
Ps Pe; P1, P4
Pz Ps, P1, Pe

...‘,,.
kil

' e
I i |4

Second execution: Let the certification trail consist of a set of 4-tuples, (21, 81,44, ¢1), (z3,03,52,¢3),
ey (zr,a,,b,,¢,) followed by the supposed convex hull, ¢;,¢3,...,gm- The code for CONVEX-
HULL is not used in this execution. Indeed, the algorithm performed is dramatically different than
CONVEXHULL. '

It consists of five checks on the trail data.

i. That there is a one to one correspondence between the input points and the points in
{:1,...,:,}U{ql,...,qm}.

ii. That for i€ {1,...,r}, a;, b;, and ¢; are among the input points.
ili. Forie€ {1,...,r} that z; lies within the triangle defined by a;,b;, and ;.

iv. That for each triple of counterclockwise consecutive points on the supposed convex hull the
angle formed by the points is acute.

&l

v. That there is a unique point among the points on the supposed convex hull which is a locally
maximal point. We say a point g on the hull is a local mazimum point if its predecessor in the
counterclockwise ordering has a strictly smaller y coordinate and its successor in the ordering
has a smaller or equal y coordinate.

1

If any of these checks fail then execution halts and “error” is output. As mentioned above, the
trail data actually consists of indices into the input data. This does not unduly complicate the
checks above; in fact it makes it easier to verify the first and second conditions.

Time complexity: In the first execution the sorting of the input points takes O(nlog(n)) time
where n is the number of input points. One can show that this cost dominates and the overall
complexity is O(nlog(n)).

It is possible to implement the second execution so that all five checks are done in O(n) time.
Because indices into the input data are used, the first condition can be checked by verifying that
each index is used exactly once, and that all indices are between 1 and N. The second condition
may checked simply by verifying that each index is between 1 and N. Checking that a point lies

=
=]

g

1l

i

ey

I ¥

I

i

0!

i

it

within a triangle is a geometric calculation that can be done in constant time. Checking that the
angle formed by three points is acute requires only constant time. The third and fourth checks can
be done in O(n) because the certification trail contains indices into the input data as described
above. The uniqueness of the “local maximum” requires only a constant time calculation at each
point, so it may checked in linear time.

Experimental timing data for this method may be found in Section 6.

3.1 Proof of correctness

We wish to prove that the algorithms above constitute a certification trail solution for the convex
hull problem. Although the definition is phrased in terms of functions, not algorithms, we can
simply define the functions Fy(d) and F3(d,t) on particular arguments as the values computed by
the associated algorithms.

Using our formal definition of certification trails, let D be the set of all finite planar point sets
T. Let S be the set of convex polygons, with vertices in counterclockwise order (the restriction to
counterclockwise ordering makes the convex hull unique). Then the problem we are considering is
HULL:D — S where HULI(T) is the polygon in S that forms the convex hull of T.

The description of the algorithms above defines functions F; and F;. We must show that both
conditions of Definition 2.2 hold. The following two lemmas, which we state without proof, are
required.

Lemma 3.4 Let P be a polygon on n points p1,pa,...,Ppn. P is a conver polygon iff P is simple
and each angle p;p;pi is less than or equal to 180 degrees, where i isin 1,2,..n, j = (i + 1) mod n,
and k = (i + 2) mod n.

Lemma 3.5 If P is a non-simple polygon, then either P has more than one local mazima, or the
inlerior angle at some vertez is greater than 180 degrees.

Theorem 3.6 Fi(d) and F;(d,t), as defined above, constitute a certification trail solution for the
problem HULL.

Proof: =~ We must prove that both conditions of Definition 2.2 are satisfied by these functions.

Part 1: Recall that the first condition is: for all d € D there exists s € S and ¢ € T such
that Fi(d) = (s,t) and F3(d,t) = s and (d,s) € P. Intuitively, this means that if both executions
perform correctly, then they will both output the convex hull of the input, which is unique. Note
that generation of the certification trail does not affect the output of the Graham Scan algorithm.
Thus the condition on F(d) is satisfied by the correctness of the Graham Scan algorithm, the proof
of which is well known [20). To show that F3(d,t) = s, note that a copy of s is contained on the
trail t. Our description of Fy(d,t) states that s is output unless one of the five checks above fails.
It is trivial to verify that the first three of these checks must be satisfied. The fourth check cannot
fail, since the polygon described by s is convex (because (d,s) € P). Similarly, if the fifth check
fails, then the polygon described by s has two local maxima, and this is not possible for a convex
polygon.

Part 2: The second condition is: for all d € D all t € T either (F3(d,t) = s and (d,s) € P) or
F3(d,t) = error. Intuitively, this means that given an input and arbitrary trail, F3(d, t) produces a
solution to the problem or flags an error. Our definition of F3(d, t) states that the polygon Q stored
on the trail is output unless one of the five checks fails. We must therefore demonstrate that if all
five checks succeed, then Q is the convex hull of the input points d. Let H be the convex hull of
the points d. The first condition guarantees that every point in d is classified as a hull point or an

7

Kl |

\\m f

il

"oy
il L

‘\l
i

! o=
i

L il

| B

interior point. The second condition guarantees that the triangles used to identify interior points
are formed from input points, and the third check verifies that the interior points are indeed inside
their respective triangles. Note that we do not attempt to verify that the triangles on the trail are
the ones that would be produced by Fi(d). In general, for a given interior point, there may be
several triangles of input points in which it is contained. Together, the first three conditions imply
that all points in H are also in Q, since it is impossible for a hull point to be contained in a triangle.
Note that these three checks do not exclude the possibility that interior points are present in Q,
nor do they guarantee that the ordering of the hull points in Q is correct. The final two checks
will accomplish this. If the last two checks are satisfied, Lemma 3.5 states that Q is simple, and
therefore it must be convex by Lemma 3.4.

Thus, Q is a convex polygon whose vertex set is a superset of the vertices of H , i.e., H is
contained in Q. This implies that no other point from the input set may be a vertex of Q, since any
input point that is not a hull point is interior to H and therefore interior to Q. Finally, it is clear
that the ordering of the vertices of Q and H must be the same (although there might appear to
be two possible orderings, clockwise and counterclockwise, a clockwise ordering will fail the fourth
check). Therefore if all five checks succeed, then the output of F3(d, t) will be the convex hull of d.

This demonstrates that the algorithms described meet the conditions of Definition 2.2, and are
therefore a certification trail solution to the convex hull problem. |

3.2 Other convex hull algorithms

It is possible to use this technique to provide certification trails for other convex hull algorithms.
The key is that for each non-hull point p we must find a triangle of input points (not necessarily hull
points), containing p. For some convex hull algorithms, a containing triangle is available directly or
can be easily computed when it is determined that a particular point is not on the hull. However,
this is not true of all convex hull algorithms. If, however, we allow extra overhead during the first
execution we may apply this technique to any planar convex hull algorithm, provided that the
output is a polygon and not merely an unordered list of hull vertices.

Let H = q1,¢2,¢3...,qx be the convex hull of a set of n points. We label the points so that ¢, is
the point with smallest abscissae (and smallest ordinate in case of a tie). Since H is convex, the
remaining points occur in sorted angular order around ¢,. Now for each non-hull point p, we may
determine which triangle p; p;pi4, it lies in with a binary search. Thus we may determine containing
triangles for the non-hull points in O(nlogh) time. Under several distributions the number of hull
points is much smaller than the number of input points [20] so this overhead will often be quite
small.

‘4 Sorting

Sorting is one of the most important basic problems in computer science. There is a massive body
of literature discussing sorting and a significant fraction of computer time is spent performing sort
operations. We will see how the certification trail approach may be applied to this problem. Assume
that a particular sorting algorithm takes as input an array of n elements and outputs an array of
n elements. The algorithm is supposed to place the data into non-decreasing order.

Note that it may not appear necessary to use a certification trail for this problem. It might seem
that all that is required is to verify that the output is in non-decreasing order. Unfortunately, this
is not sufficient and we must also verify that the output consists of the same elements as the input.
A certification trail is required to perform this check efficiently.

I w1,

t
I

[)
Dhiwlb il

|‘.| Ay

(i

I

"
i

LRl LI

1l

gl UE

1/ 11| B AN}

§

The information placed on the trail is a permutation relating the input and output arrays. This
permutation is created by adding an Item Number field to the elements being sorted, such that the
i-th element is labelled with item number i. After sorting, the permutation is obtained by reading
the Item Numbers from the elements in their new order.

The second algorithm reads the permutation from the trail, uses it to rearrange the input elements
in linear time, and checks that they are now in sorted order. Additionally, it is necessary to check
that the the information on the certification trail actually is a permutation of n elements, i.e., each
number from 1 to n occurs exactly once. Should any of these checks fail, the second algorithm
outputs “error”, otherwise it outputs the sorted elements.

Note that the certification trail given for sorting is quite different than that given for the convex
hull problem. In the latter case, the certification trail was constructed for a particular algorithm,
and the code executing that algorithm modified to produce the trail. In this case, the sorting
algorithm is not changed. Instead the data being sorted is modified by a preprocessing step, and the
necessary information extracted by a postprocessing step. Thus this technique may be implemented
as a “wrapper” around existing sort routines, no matter which algorithm is implemented.

Experimental data is presented in Section 6.

4.1 Proof of correctness

For concreteness we consider only the sorting of integers, though the proof does not depend on this
condition.

Definition 4.1 Let D consist of all finite sequences of integers. Let S consist of all finite non-
decreasing sequences of integers. Let P : D — S be the sorting problem, i.e., (d,s) € P iff s is a
permutation of d (by definition of S, 5 is a non-decreasing sequence). Note that for every d € D,
there is a unique s € S such that (d,s) € P. Let T consist of finite sequences of integers. For z a
member of any of the sets D, S, or T, we will also denote the sequence of integers by z;, 2, ..., zn.

Definition 4.2 The function F; : D — S x T is defined as follows. Given an input sequence d
of N integers, Fi(d) = (s,t) where s is the unique element of S such that, (d,s) € P and t is a
permutation of 1,2,3,...,Ns.t., s; = d;, forall i = 1,2,...N. Note that unless d consists of N distinct
integers, there will be more than one possible t. The ¢ produced by F(d) may be chosen arbitrarily.
Since for every d € D, there exists a unique s € S with (d, s) € P, the function F; is well defined.

Definition 4.3 The function F; : DxT — Su{error} is defined as follows. F3(d,t) = d,, Y PR
(where d consists of N integers) iff

i. t contains at least N integers.
ii. The first ¥ integers of ¢ are a permutation of {1,2,...N}.
iii. dg. < dg'-_H for i = 1,2,...,N— 1.

Otherwise, Fy(d,t) = error. Note that though ¢ may contain more than N integers, F3(d,t)
depends only on the first N.

The definitions of the functions F) and and F; correspond to the informal descriptions of the
sorting algorithms given in the text above.

Theorem 4.4 Fy and F; are a certification trail solution to the sorting problem P.

| A ER

/
|

mr i

ik
v i

BI

N

. 1t

Wil

i

Hmid|

ENmE

I

|

1
i

Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.

Part 1: We must prove that for all d € D there exists s € S and ¢ € T such that Fi(d) = (s,1)
and F3(d,t) = s and (d,s) € P. If Fi(d) = (s,t), then by definition (d,s) € P. We must show
that Fy(d,t) = s. tis a permutation of {1,2, ..., N}, so the first two conditions of Definition 4.3 are
satisfied. Furthermore, by Definition 4.2, d;, = s; fori = 1,2,...N. Since s € S, itisa nondecreasing
sequence, and thus the third condition of Definition 4.3 is satisfied. Therefore Fy(d,t) = s.

Part 2: We must show that for all d € D and all ¢ € T either (F3(d,t) = s and (d,s) € P)
or F3(d,t) = error. Pick d € D with length N. Pick t € T. The interesting case is when ¢ is a
permutation of {1,2,..., N}. If not, then either the first N integers of ¢ are not such a permutation,
in which case F3(d,t) = error. We may ignore the possibility that ¢ consists of such a permutation
followed by more integers, since F; depends only on the first N integers of t.

Examine the sequence dy,, dy,,,,ds. If there is an i such that d;, > dy;,, then the third condition
of Definition 4.3 is violated so F3(d,t) = error. Otherwise F3(d,t) = d;,,dy,, ..., d¢y. Furthermore,
this is a non-decreasing sequence, so it must be in S. Finally, since this sequence is a permutation
of d, (d, F5(d,t)) € P.

Therefore, both conditions of Definition 2.2 are satisfied, so F; and F; constitute a certification
trail solution to sorting. [

Note that we defined T as the set of all finite sequences of integers. We could have instead defined
T as the set of permutations of {1,2,...N} for all positive N. This would make the function I
“simpler”, in that it doesn’t have to verify that that certification trail consists of a permutation (it
would, however, have to verify that it consists of a permutation of the correct size). In this case,
checking that the trail ¢ is indeed a permuation (i.e., actually in its domain) would be left to the
implementation of the function.

5 Certification Trails for Shortest Paths

This classic problem has been examined extensively in the literature. Qur approach is applied to

a variant of the Dijkstra algorithm [11] as explicated in [10]. First we require some preliminary
definitions.

Definition 5.1 A grapk G = (V, E) consists of a vertez set V and an edge set E. An edge is an
unordered pair of distinct vertices which we notate with the following style: [v, w] and we say v is
adjacent to w. A pathin a graph from v, to vy is a sequence of vertices vy, vs,...,v; such that
[vi, viy1] is an edge for i € {1,...,k - 1}. Let w be a real function defined on E. The length of a
path from v, to v; is the sum of w([vi, vi41]) for each edge [v;,v;41] in the path.

Let G = (1), E) be a graph and let w be a positive rational valued function defined on E. Given
a vertex v; in V, find a set of shortest paths from v; to each other vertex in V. Note that since w
is positive on all edges, a shortest path must exist between any two vertices, though it need not be
unique.

Before we discuss the algorithm we must describe the properties of the principal data structure
that are required. Since many different data structures can be used to implement the algorithm, we
initially describe abstractly the data that can be stored by the data structure and the operations
that can be used to manipulate this data. The data consists of a set of ordered pairs. The first
element in these ordered pairs is referred to as the item number and the second element is called
the item value or just value. Ordered pairs may be added and removed from the set, however, at
all times the item numbers of distinct ordered pairs must be distinct. It is possible, though, for

10

"
i il

U

L

v
|

!

LLH

ma il

i !

b

L]
isi

oo

ne

1l
i

10

multiple ordered pairs to have the same item value. In this paper the item numbers are integers
between 1 and n, inclusive. Qur default convention is that i is an item number, z is a value and
h is a set of ordered pairs. A total ordering on the pairs of a set can be defined lexicographically
as follows: (i,z) < (,2') iff £ < 2/ or (z = ’ and i <). Our data structure should support a
subset of the following operations.

member(i, k) returns a boolean value of true if h contains an ordered pair with item number i,
otherwise returns false.

insert(i,z, h) adds the ordered pair (i,z) to the set h.
delete(i, h) deletes the unique ordered pair with item number i from A.

changekey(s, z, h) is executed only when there is an ordered pair with item number ¢ in h. This
pair is replaced by (i, z).

deletemin(h) returns the ordered pair which is smallest according to the total order defined above
and deletes this pair. If h is the empty set then the token “empty” is returned.

predecessor(i, h) returns the item number of the ordered pair which immediately precedes the pair
with item number ¢ in the total order. If there is no predecessor then the token “smallest” is
returned.

A description such as the one above describes an abstract data type. There may be several
possible implementations for a particular ADT. In our solution, different ADT implementations
will be used for the two executions. The first implementation will produce a certification trail
allowing the second implementation to be simpler and to perform ADT operations more quickly.

Aside from the implementation of the abstract data type, both of our algorithms are the same.
Pidgin code for this algorithm appears below. Figure 3 illustrates the execution of the algorithm
on a sample graph. Table 1 records the data structure operations performed when the algorithm
is run on the sample graph. The first column gives the operations, with the parameter & omitted
to reduce clutter. Member operations are also omitted from the table. The second column gives
contents of h after the execution of each instruction. The third column records the order pair
deleted by deletemin operations. The fourth column records the information (if any) output to the
certification trail by this operation.

This certification trail is created by modifying the insert(i, z, k) and changekey(i, z, h) operations
performed during the first execution. The modified instructions perform the same operations
described above and in addition output the following information to the certification trail.

insert(i,z,h) Output the item number of the predecessor of (i,z) (as defined above) to the trail.
If there is no predecessor, output the token “smallest”. Note that depending on the data
structure implementation, the predecessor may already be computed during insertion or may
require a separate call to the predecessor(i, k) operation. :

changekey(i,z, h) Output the predecessor of the ordered pair (i,z) (i.e., pair resulting from the
change) to the trail. If there is no predecessor, output the token “smallest™ to the trail.

We shall see that this information allows a faster and simpler data structure implementation to be
used for our second algorithm.

The algorithm proceeds by maintaining a set § of vertices for which shortest path lengths are
known, and a “frontier” set F of vertices adjacent to members of S along with the best known path

11

CE

{908

L

Um I

i

LT

n
b

e

LI

L] W

l

length from v;. At each step, we find the vertex v in F with smallest known path length and place
itin §, F is then updated by examining the neighbors of v. New vertices may be added to F ora
shorter path (passing through v) may be found to existing vertices in F.

To efficiently find the vertex to add to §, the algorithm uses the data structure operations
described above. As soon as a vertex v is adjacent to some vertex u in S, it is inserted in the set
F. The value for v is the shortest known path to v, which is the value of u (shortest path to u)
plus the weight of edge vw. The array element prefer(v) is used to keep track of this “best” edge
connecting v to S. As the tree grows, information is updated by operations such as insert(i, z, k)
and changekey(i, z,h). The deletemin(h) operation is used to select the next vertex to add to the
span of the current tree. Note, the algorithm does not explicitly store paths. Implicitly, however,
if (v, z) is returned by deletemin, then prefer(v) indicates the predecessor of v on the shortest path
from v;.

Algorithm SHORTEST-PATH(G,v,,weight)
Input: Connected graph G = (V, E) where V = {1,...,n} with edge weights.
Output: Lengths of shortest paths from v, to all other vertices.

1 FOR ALL u€V, u):= 00 END FOR

2 vu):=0

3 F:= v1;

4 WHILE F #0 DO

5 (v,k):= deletemin(F)

6 FOR EACH [v,w)€ E DO

7 IF v) + weight([v, w]) < w) THEN

8 w) := v) + weight([v, w]); prefer(w) := v
9 IF member(w, F) THEN changekey(w, w), F)
10 ELSE insert(w, w), F) END IF

11 ENDIF

12 END FOR

13 END WHILE
14 FOR ALL u € V - {1}, OUTPUT(u)) END FOR
END SHORTEST-PATH

Note that this code may be easily modified to output the shortest paths as well as their lengths.

First execution: In this execution the SHORTEST-PATH code is used and the abstract data
type is implemented with a balanced search tree such as an AVL tree 1}, a red-black tree [14], or
a b-tree [5]. In addition, an array indexed from 1 to n is used. Each element of this array contains
two fields, InSet, a boolean, and Value, storing the same type as the value used in the ordered
pairs. Initially, InSet is false for all array elements. The balanced search tree stores the ordered
pairs in k and is based on the total order described earlier. For each item number i, the InSet field
of the i-th array element is true if and only if there is a pair with item number ¢ in the set. The
Value field of the i-th array element stores the value of the pair with item number 1, if there is one
in the set. It is undefined if there is no such pair in the set. This array allows rapid execution of
operations such as member(i, h) and delete(i, h).

Second execution: This execution also uses the SHORTEST-PATH code, however, a different
data structure is used to implement the ADT. We call this data structure an indezed linked list
and it is depicted in Figure 5. It consists of an array and a doubly linked list. The array is indexed
from 0 to n and contains pointers to the elements of the linked list. Except for the first element,

12

[U FURFIR | i

NG

|

0 D

oo

b

v

L

g

Filll

Figure 3: Shortest path example.

13

RO 1+ A

|

i
|

1
i

il

[}
b

LI

b

e

o

Operation Set of Ordered Pairs Delete Trail
insert(2,50) (2,50) smallest
insert(3,60) (2,50),(3,60) 2
deletemin (3,60) (2,50)
insert(4,130) (3,60),(4,130) 3
insert(5,62) (3,60),(5,62),(4,130) 3
deletemin (5,62),(4,130) (3,60)
changekey(4,103) (5,62),(4,103) 3
deletemin (4,130) (5,62)
changekey(4,94) (4,94) smallest
insert(6,72) (6,72),(4,94) smallest
deletemin (4,94) (6,72)
deletemin (4,94)
deletemin empty

Table 1: Example of operations and trail.

each element in the list contains a data field storing an ordered pair. The first element stores a
special ordered pair (0, “smallest”) which is guaranteed to compare less than any other ordered
pair. The list is maintained in sorted order based on the total ordering defined above for ordered
pairs. This list represents the contents of the set A. The i-th element of the array points to the node
containing the ordered pair with item number i, if such an element is present in h. Otherwise the
pointer is nil. The 0-th element of the array points to the node containing (0, “smallest”) Initially,
all pointers are nil except for the 0-th one. Using an ordered list allows us to perform deletemin(h)
operations quickly. The array provides rapid random access to the elements. We now describe the
implementation of the data structure operations.

insert(i,z,h) Read the next value from the certification trail. This value, call it j, is the item
number of the ordered pair that will be the predecessor of (i,z) after it is inserted. To
insert this element, we follow the j-th array pointer to the list node containing the pair (j,y).
There is one special case, if “smallest” is read from the trail rather than an item number,
we follow the 0-th pointer. A new node is allocated and inserted into the list just after the
node containing (j,y). The data field of this node is set to (i,z). Finally, the i-th pointer is
set to point to the new node. Figure 5 shows the insertion of (5,62) into the data structure,
given that the next item on the certification trail is 3. When the insert(¢, z, k) operation is
performed, some checks must be conducted:

i. The i-th array element must be nil before the operation is performed.

ii. The value j read from the trail must either be “smallest” or be between 1 and n, i.e., it
must be a valid item number.

iii. The j-th array element must not be nil before the operation is performed.

iv. The sorted order of the pairs stored in the linked list must be maintained. That is,
if the j-th pointer points to (j,y) and its successor before the insertion (ignoring the

14

w oo
i

I

|}

|

b

13

1

i

ol

{4

LRI

mm

special case when (j,y) is the last element of the list) is (j',y’), then we must have
(J:y) < (i,2) < (5", ¥).

If any of these checks fails, then the execution halts and “error™ is output.

delete(i, k) If the i-th pointer is nil, halt execution and output “error”. Otherwise follow the i-th
pointer to find the list node containing (i,z). This node is removed from the list. Note that
since the list is doubly linked, this is a constant time operation. The i-th pointer is then set

to nil. The only condition that must be checked is that the i-th pointer is not nil before the
deletion

changekey(i, z, h) To perform this operation, it suffices to perform delete(i, h) followed by insert(i, z, h).

The next item for the certification is read when the insert(i, z, h) operation is performed. If
any of the conditions required by either of these operations fails, then execution halts and
“error” is output.

deletemin(h) The 0-th array pointer is traversed to the list head (which contains (0, “smallest”)).
The pointer to the next node in the list is followed. If there is no next node then “empty” is
returned. Otherwise, let (i,z) be the pair stored in that node. We remove the node from the
list, set the i-th array element to nil, and return (i, z).

member(i, A) The i-th array pointer is examined. “False” is returned if it is nil, otherwise “true”
is returned.

predecessor(i, h) This operation is not used during the second execution of SHORTEST-PATH,
but is described for completeness. Follow the i-th pointer to the node containing the pair
(¢,z). Follow the pointer from that node to the node preceding it on the list (note that this
node will always exist). If this is the special node (0, “smallest”), return “smallest”, otherwise
return the item number of the pair stored in this list.

There are two variations to this scheme that are worth noting. First, we could implement a
singly linked list rather than a doubly linked list. This eliminates the overhead of maintaining the
extra pointer. Note, however, that operations such as delete(:, h) require access to predecessors in
order to update the list quickly. This can be provided by modifying the operations delete(i, h),
changekey(i, z, h), and predecessor(i, h) so that they output predecessor information to the trail.

The other variation also uses a singly linked list but removes the need for extra certification trail
information for delete(i, k) and changekey(i, z, k) operations. It uses the technique of marking a
list node for deletion rather than removing them from the list node immediately (the appropriate
pointer in the array is still set to nil immediately). When performing other operations, we check
for and remove any marked nodes immediately following nodes visited. The total running time is
still linear, though insert operations are no longer constant time operations.

Time complexity: In the first execution each data structure operation can be performed in
O(log(n)) time where |V| = n. There are at most O(m) such operations and O(m) additional time
overhead where |E| = m. Thus, the first execution can be performed in O(mlog(n)) In addition,
it provides us with a relatively simple and illustrative example of the use of a certification trail.

In the second execution each data structure operation can be performed in O(1). There are still
at most O(m) such operations and O(m) additional time overhead. Hence, the second execution
can be performed in O(m) time, i.e., linear time.

Section 6 contains results of timing experiments with this technique.

15

il

"
W

ki 0l 1

LN

o

lw " |1H"
i Ll

mom

(Osm) fje> (360) |je> (4,130) | NIL
0 1 2 3 4 5 6

(Osm) &> (360) fe>| (562) fe>{ (4,130) |—> NIL
)
0 1 2 3 4 5 6

Figure 4: Example of the indexed linked list before and after inserting (5,62)

16

Lt

n
A

By

i

[T

5.1 Proof of correctness

We wish to prove that the two algorithms given above constitute a certification trail solution to the
SHORTEST-PATH problem, i.e., that the functions Fy(d) and F3(d,) defined by these algorithms
satisfy Definition 2.2. First, we consider the problem of evaluating a sequence of the above data
structure operations.

Definition 5.2 Let D be the set of finite sequences of the data structure operations defined above.
Let S be the set of finite sequences of answers to data structure operations. Let P be the relation
(d,s) where d € D'and s € S, and s is the sequence of answers resulting from executing the
operations d starting with the empty set. '

Note that we are examining all finite sequences of data structure operations, not just “legal”
ones. That is, may attempt to perform an insertion with an item number already in use, attempt
to perform deletion on an item number not being used, etc. We assume that if one of these “illegal”
operations is attempted, the operation will output “error” and terminate processing. Thus, we can
define the answer sequences for these “illegal” sequences.

Definition 5.3 Let Fj(d) be defined by the result of executing the operations on any of the stan-
dard data structures described above, with the insert(i, z,) and changekey(i, z, k) operations mod-
ified to output trail information. Let F3(d,t) be defined by the result of executing the operations
using the indexed linked list implementation described above.

Theorem 5.4 Fy(d) and F;(d,t) meet the conditions of Definition 2.2 (that is, F,(d) and F(d,t)

constitule a certification trail solution for P).

Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.

Part 1: The first condition we must verify is that for all d € D there exists s € S and there
exists t € T such that Fi(d) = (s,t) and F;(d,t) = s and (d,s) € P. Let (s,t) = F(d). The
modifications of the data structure operations that produce trail output do not affect how the data
structure is maintained. Proofs of correctness for the standard data structures are well known, so
we may assume (d,s) € P. We must demonstrate that F3(d,t) = s. ‘

This may be proven by showing that after each operation that modifies the set h, the elements
stored in the indexed linked list (our implementation) correspond to the elements in the set A (the
abstract definition). We must also demonstrate that if this relationship is maintained, then correct
output is generated by operations that generate output.

To demonstrate this, we show that each operation maintains the following invariants.

i. If the pair (#,z) is in h U (0, “smallest”), then the i-th pointer in the array of pointers points
to the list node containing (i,x).

ii. If, for some i, there is no pair in A with item number i then the i-th pointer is nil.
ili. The list nodes are in ascending order.

iv. Every list node is pointed to by some pointer in the array. (Together with the first condition,
this implies that it is pointed to by exactly one pointer from the array).

The first two conditions assert that the indexed linked list and the set A contain the same
elements (ignoring the special list head element in the linked list). The last two invariants allow us
to demonstrate that the linked list operations function correctly.

17

il

'
L

it

r
k

e |

ki

L

L

v

Clearly each of these conditions is true before the first operation is performed (the set of pairs
is empty, all pointers except the 0-th are nil, and (0, “smallest”) is the only list node).

Assume that the above conditions are satisfied after the first k operations, and that the output
generated by any of the first k operations is correct. We claim that the invariants will will remain
satisfied after the (k+1)-st operation, and that if the (k+ 1)-st operation generates output, it will be
correct. Let s(k + 1) denote the output produced by the (k + 1)-st operation (where Fi(d) = (s,1)).

Consider each possible operation. For brevity, we omit details for “illegal™ operations, i.e., those
that violate the precondition of the operation. Similarly, we omit details of the special case of
“smallest” being read from the trail.

insert(i, z, h) The trail t contains the item number j of the predecessor of (i, z). Call the predecessor
(J,v). By assumption, the i-th pointer is nil before the insert. If not, this operation outputs
“error” and execution halts. Since the indexed linked list correctly represents A at this point,
this agrees with the result returned by Fi(d), i.e., s(k + 1) = “error”. After the insertion is
performed, the i-th pointer is set to the new node containing (,z), so the first condition is
satisfied. No other nodes are added to the list, so the second condition will remain true. The
third condition is satisfied since (j,y) is now the immediate predecessor of (i,z). Since no
other pointer in the array has been changed, the fourth condition is still true.

delete(i, h) This operation sets the i-th pointer to nil, and removes the node containing (i,z)
from the list. This satisfies the second invariant. Deleting a node cannot violate the third
invariant. Since no other nodes are removed and no other pointers are changed, the first and
fourth invariants remain satisfied.

deletemin(h) By assumption, the nodes are currently in ascending order. Thus, the minimum
element in h must correspond to the node following the special list head node, call the pair it
contains (¢, z). This pair is the correct output for this operation. As with delete, the above
four conditions remain true after this node is removed and the i-th pointer set to nil.

changekey(i, z,h) We have implemented changekey(i,z,h) as an insertion followed by a deletion.
Since both of those preserve the invariants, changekey(i, z,) must do so as well.

member(i, k) By assumption, the indexed linked list correctly represents h before this operation,

so the output of this operation will be correct. Since this operation does not change the set
or the indexed linked list, the invariants remain satisfied.

predecessor(i, h) By assumption, the indexed link list correctly represents h, and furthermore it is
currently in sorted order. Thus, the list element preceding the node containing (i, z) is the

predecessor. Since this operation changes neither A nor the indexed linked list, the invariants
remain satisfied.

This demonstrates that the first condition of Definition 2.2 is satisfied.

Part 2: The second condition is for all d € D and for all t € T either (Fy(d,t) = s and
(d, s) € P) or F(d,t) = error. Intuitively, this states that if F3(d,t) is passed an arbitrary trail, it
either outputs a correct answer, or it outputs “error”. We prove an even stronger condition. Let
tcorrect be the trail returned by Fi(d), i.e., Fi(d) = (8,tcorrect). Then either teorrees is 2 prefix of ¢,
or F3(d,t) = error.

If teorrect is a prefix of ¢, then we are done. The algorithm describing F3(d,t) does not examine
any part of the trail after t.orrect, 80 F3(d,t) = s.

18

|F\'W IR
b Gl il

g

i
1)

I ML‘

L

[
!

il

If t.orrect is not a prefix of ¢, let p be the position at which they first differ. Let O be the number
of the operation that uses the trail data at p. Then operation O is either an insert(i,z,k) or
changekey(i, z, h) operation. If it is an insert operation, then tcorrect contains the item number of
the predecessor of (i, z). Since ¢ contains a different value, call it j, at this location, the insert(, z, h)
operation will fail one of it’s three checks. Either j will not be valid item number, or the j-th
pointer will be nil, or the pair (j,y) will not be the predecessor of (¢,z). The argument for the
changekey(i, z, h) operation is essentially the same.

Thus, the second condition is satisfied.

Therefore, F1(d) and F3(d,t) are a certification trail solution to P, the problem of evaluating
data structure operations. |

Definition 5.5 Let D be the set of finite graphs G = (V, E) with edge weights consisting of positive
integers. Assume the indices are numbered 1 through n. Let S be the set of finite ordered tuples
of positive integers. Let P be the relation that associates each graph with the tuple consisting of
the minimum path lengths to each vertex. Let §Py(d) be the function defined by the SHORTEST-
PATH algorithm with the data structure defined for the first execution. Let SP;(d,t) be the function
defined by the SHORTEST-PATH algorithm using the indexed linked list implementation.

Corollary 5.8 SPy(d) and SP;(d,t) constitute a certification trail solution for P.

Proof: If SPy(d) = (s,t), then the correctness of Dijkstra’s algorithm implies that (d,s) €
P. The algorithms that compute SPy(d) and SP;(d,t) are the same except for data structure
implementation. Theorem 5.4 implies that if these algorithms generate the same data structure
operations, then the same sequence of answers will be generated. Thus, to demonstrate that
SP,(d,t) = s, it must be shown that the same sequence of data structure operations is generated
by both algorithms. Examination of SHORTEST-PATH indicates that the k-th data structure
operation to be performed is dependent only on the input and the result of previous data structure
operations. For example, at line 9, either an insert(i,z,h) or a changekey(t,z,h) is performed,
depending on the result of a member(i,h) operation. The input graph d is identical for both
algorithms, thus the first data structure operation performed must be the same. Assume that the
first k operations performed by both algorithms are identical. Then, by Theorem 5.4, the answers
to those operation will be the same. Since the (k + 1)-st operation depends only on the input and
the results of the previous k operations, it must also be the same for both algorithms. Therefore
the same sequence of data operations is performed in both algorithms, so SP;(d,t) = s.

The proof that the second condition holds is the same as for Theorem 5.4. Either the input trail
t contains the “correct” trail as a prefix, or one of the data structure operations will fail, resulting
in an “error” output. |

One point has been glossed over in the above proof. In the SHORTEST-PATH algorithm results
of deletemin(k) are not output nor are they stored in the certification trail. It might be possible for
incorrect answers to be returned by deletemin(h) operations while still producing correct shortest
paths and lengths. The second execution of the SHORTEST-PATH algorithm will not detect this
since the correct output is produced. By proving that the answers to deletemin(h) operations are
the same, we have proven more than strictly required.

6 Experimental Data on Certification Trails

We have performed extensive timing experiments on several basic and well-known problems, includ-
ing the ones described in this paper. Algorithms for solving these problems were implemented, both

19

||. Tl
Vol

E
e=

B

il

Vi

NI I

!

with and without the use of certification trails. Timing data was collected on both the certification
trail solutions and the basic solutions. The following tables summarize these results.

Size | Basic Algorithm First Execution Second Execution | Speedup | Percent
(Also Generates Trail) (Uses Trail) Savings
5000 0.61 0.62 0.07 8.73 43.62
10000 1.33 1.34 0.14 9.56 44.54
25000 3.68 3.68 0.36 10.22 45.12
50000 7.68 7.74 0.71 10.75 44.94
100000 16.23 16.30 1.43 11.35 45.39
200000 33.93 34.37 2.84 11.94 45.16

Table 2: Convex Hull

Size Basic Algorithm First Execution Second Execution | Speedup | Percent

(Also Generates Trail) (Uses Trail) Savings
10000 0.28 0.30 0.04 7.00 39.29
50000 1.80 1.90 0.19 947 41.94
100000 3.96 4.08 0.41 9.66 43.31
500000 23.95 24.69 2.14 11.19 43.99
1000000 50.23 51.57 4.38 11.47 4431

Table 3: Sort
Size Basic Algorithm First Execution Second Execution | Speedup | Percent
(Also Generates Trail) (Uses Trail) Savings

100,1000 0.04 0.05 0.02 2.00 12.50

250,2500 0.15 0.16 0.06 2.50 26.67

500,5000 0.31 0.33 0.11 2.82 29.03

1000,10000 0.70 0.76 0.23 3.04 29.29

2000,20000 1.58 1.67 0.45 3.51 32.91

2500,25000 2.06 2.15 0.55 3.75 34.47

Table 4: Shortest Path

The timing information was gathered on Sun SPARCstation ELC with 16MB of RAM. The
system was run as a standalone machine in single user mode during timing experiments.

Much of the data presented in the timing table is essentially self-explanatory relative to the
certification trail technique and algorithms considered. However, a brief discussion of the table
entries is appropriate.

The column labelled Basic Algorithm contains timing data which gives the execution time of the
algorithm in producing the output without the generation of the certification trail. All timing data
is listed in seconds.

20

)
mu‘" bildia

L
d

g

l L]
M

WL T
Pl
uwln

i

il
4

B!

il

TR
il

nmne

The First Ezecution column gives the execution time of the algorithm in producing the output
with the additional overhead of generating the certification trail.

The Second Erecution column gives the execution time of the algorithm in producing the output
while using the certification trail.

The Speedup column is the ratio of the run times of the Basic Algorithm and the Secondary
Execution. One reason this figure is important is that it is possible for the two algorithms to run in
different environments (different hardware, programming language, etc). A high speedup indicates
that less powerful hardware or a higher level language (with associated overhead) may be sufficient
for the second execution.

The Percent Savings column records the percentage of the execution time savings which is gained
by using the certification trail method as compared to 2-version programming approach. The time
required for a 2-version programming approach was estimated by doubling the time reported in the
Basic algorithm. This assumes that both versions take approximately the same amount of time to
execute,

In addition to the tables, the timing information for the convex hull algorithm is plotted in
Figure 5. Plots for the other two examples are similar.

Examination of the data collected for the convex hull algorithm indicates that:

e The overhead in generating the certification trail is very small, less than 2% of the running
time of the basic (no certification trail) algorithm.

¢ The second execution is very fast, achieving an order of magnitude speedup for larger input
sizes. This suggests that a single “second algorithm” process could easily handle the output
generated by several “first algorithm” processes running in parallel. Alternately, the high
speedup would allow the second execution to be run on lower performance (and hence less
expensive) hardward. Finally, the large speedup and reduced code complexity may make it
possible to take advantage of a formally verifiable language (which may require significant
overhead) in implementing the second algorithm.

The data for sorting indicates that the certification trail also requires very low overhead and
results in a large speedup. For the shortest path problem the overhead is still very low, and the
speedup, while not as dramatic as for the first two problems, is still quite respectable.

7 Comparison With Other Techniques

The certification trail approach shares similarities with other valuable fault tolerance and fault
detection techniques that have been previously proposed and examined, but in each case there are
significant and fundamental distinctions. These distinctions are primarily related to the generation
and character of the certification trail and the manner in which the secondary algorithm uses the
certification trail.

First consider the important and useful technique called N-version programming (9, 3]. When
using this technique N different implementations of an algorithm are independently executed with
subsequent comparison of the resulting N outputs. There is no relationship among the executions of
the different versions of the algorithms other than that they all use the same input; each algorithm
is executed independently without any information about the execution of the other algorithms. In
marked contrast, the certification trail approach allows the primary algorithm to generate a trail
of information which can be read by the secondary algorithm. The advantages of utilizing this
additional information are shown in the body of this paper. In effect, N-version programming can
be thought of relative to the certification trail approach as the employment of a null trail.

21

m‘“’!'T l .
T, .

BT

[ey

(e

Bl

o

IR

35 1 1 | l | I | 1 1

30
25
")
i 20 |-
S
3
£L
Q
E 15 |
'.._
10 Basic Algorithm ——
Generate Trail ----
Use Trail -----
5 F -
0 BT DR R 1 1 1] | 1

0O 20 40 60 80 100 120 140 160 180 200
Number of Input Points (Thousands)

Figure 5: Convex Hull Run Times.

-
i

1
b

i

[F

it

Another valuable technique, known as the recovery block approach (2, 18, 21}, was proposed by
Randell. It uses acceptance tests and alternative procedures to produce what is to be regarded as
a correct output from a program. When using recovery blocks, a program is viewed as a being
structured into blocks of operations, which after execution yield outputs which can be tested in
some informal sense for correctness. The rigor, completeness, and nature of the acceptance test
is left to the program designer, and many of the acceptance tests that have been proposed for
use tend to be somewhat straightforward [2]. When using certification trails it is clearly possible
to combine the second execution and the comparison test to yield a program which certifies the
correctness of the output of the first execution. Unlike an acceptance test this certifier must satisfy
strict formal properties of correctness. Also note that the certification trail technique emphasizes
the capability of generating additional data to ease the certifying process and does not rely solely
on data which would normally be computed. It should be possible to fruitfully combine the ideas
of recovery blocks and certification trails.

Algorithm-based fault tolerance [15, 17, 19] uses error detecting and correcting codes for perform-
ing reliable computations with specific algorithms. This technique encodes data at a high level and
algorithms are specifically designed or modified to operate on encoded data and produce encoded
output data. Algorithm-based fault tolerance is distinguished from other fault tolerance techniques
by three characteristics: the encoding of the data used by the algorithm; the modification of the
algorithm to operate on the encoded data; and the distribution of the computation steps in the
algorithm among computational units. The error detection capabilities of the algorithm-based fault
tolerance approach are directly related to that of the error correction encoding utilized. The cer-
tification trail approach does not require that the data to be executed be modified nor that the
fundamental operations of the algorithm be changed to account for these modifications. Instead,
only a trail indicative of aspects of the algorithm’s operations must be generated by the algorithm.
As seen in Section 6, the production of this trail does not add significant overhead. Moreover, any
combination of computational errors can be handled.

Recently, Blum and Kannan (6] have defined what they call a program checker. This interesting
work has been followed by a burst of activity in this general area [12, 7, 25, 8, 4]. Each of these
papers, however, describes work which differs significantly from the work we present. A program
checker is an algorithm which checks the output of another algorithm for correctness. An early
example of a program checker is the algorithm developed by Tarjan [23] which takes as input a
graph and a supposed minimum spanning tree and indicates whether or not the tree actually is a
minimum spanning tree.

The Blum-Kannan program checking method differs from the certification trail method in two
important ways. First, the checker is designed to work for a problem and not a specific algorithm.
That is, the checker design is based on the input/output specification of a problem and no assump-
tions are made about the method being used to solve the problem. Because of this the algorithm
which is being checked is treated as a black box. It can not be altered nor can its internal status
be examined and exploited. In the certification trail approach the algorithm being checked is not
treated as a black box. Instead, the algorithm can be modified to generate additional information
(i.e., the certification trail) which is considered to be useful in the checking/verification process. By
exploiting this capability it is sometimes possible to design certification trail solutions which allow
faster checking than Blum-Kannan program checkers. Of course, these faster solutions are more
specialized than the Blum-Kannan checkers which are guaranteed to work for any algorithm which
solves the original problem. We believe that the added speed often outweighs the disadvantage of
specialization. .

The second important difference concerns the number of times that the program which is being
checked is executed. In the Blum-Kannan approach the program may be invoked a polynomial

23

[{1mery

il

C

o
A

3
L

-~
i,

1]
b

i

i}

| I

B

number of times. In the certification trail approach the program is run only once. Thus, the overall
time complexity of the checking process can be significantly larger for Blum-Kannan checkers.

A third less important difference stems from the fact that Blum-Kannan checkers are defined
in a more general probabilistic context. Certification trails are currently defined only for deter-
ministic programs and checkers. However, it is clearly possible to define them in the more general
probabilistic context.

Other work has been done to extend the ideas of Blum-Kannan to give methods which allow
the conversion of some programs into new programs which are self-testing and self-correcting [12,
7). However, these methods are also based on treating programs as black boxes and thus have
limitations similar to Blum-Kannan program checkers. A recent paper by Blum et al. [8] concerns
checking the correctness of memories and data structures. The results described in that paper
differ from our work using abstract data types in one central way. The checkers that they design
are tightly constrained in memory usage. Typically, they use only O(log(n)) storage to check data
structures of size O(n). Our results do not place space constraints on the algorithm used to certify
the data structure. Without a space constraint we are able to certify abstract data types such as
priority queues which are more complex than the data structures that they check, i.e., stacks and
queues. Also, we are able to achieve a speed up in the checking process and they are not.

Babai, Fortnow, Levin and Szegedy [4] present methods which appear to allow remarkably fast
checking, i.e., in polylogarithmic time. Their approach has some similarities to the methods we
propose. Both methods modify original algorithms to yield new algorithms which output additional
information. We refer to this additional information as a certification trail and they refer to this
information as a witness. In our case we are interested in modified algorithms which have the same
asymptotic time complexity as the original algorithm. Indeed, the modified algorithm should be
slowed down by at most a factor of two. In [4] the modified algorithm is slowed down by more than
any fixed multiplicative factor. Specifically, if the original algorithm has a time complexity of O(T)
then the modified algorithm has a time complexity of O(T!*¢). Note that in practice the € cannot
be too small because its inverse appears in the exponent of the checker time complexity. Another
difference between our methods is the fact that their method requires that the input and output
be encoded using an error-correcting code. The encoding process takes O(N1+¢) time for strings
of length N. However, many of the checkers we have developed take only linear time so the cost
of simply preparing to use their method appears to be too great in some cases. It is also necessary
to decode the output after the check. Lastly, we note that Fortnow has stated that their result is
currently not practical [24].

8 Generalization and Future Research Areas

The experimental timing data on certification trails indicates that this technique is of great practical
value as well as of theoretical interest. Furthermore, the techniques illustrated are applicable to a
wide range of problems, especially the certification of Abstract Data Types described in the shortest
path example. There are many areas of interest for future exploration, a few of which are described
below. '

8.1 Certified Data Structure Libraries

It is apparent that the certification trail technique described for the SHORTEST-PATH program
may be used for a variety of problems. Since the certification trail is produced and used by abstract
data type operations, the technique may be used with any algorithm that can be implemented in
terms of those abstract data types. Creating a library of such “certified data types” enables

24

programmers to create fault tolerant programs without having to be familiar with the certification
trail technique. Object oriented programming appears to be well suited to this task.

A possible objection to this is that it provides fault detection only for the data structure imple-
mentation, since the surrounding code is simply reused. Furthermore, the data structure imple-
. Mmentation is likely to come from library code, and hence be highly reliable. In answer to this note
that:
o ¢ In many algorithms, the code using the data structure is much simpler than the code imple-
- menting the data structure.
o Although the example above illustrated reuse of using the data structures, it is certainly
b possible for this code to be developed separately for the first and second execution programs.
o Errors are often found even in code that has been in use for a long period of time. The added
- confidence of using this technique may be desirable even for library code.
: e Even if the library code is highly reliable, the certification trail can be helpful in detecting
- errors caused by hardware problems.
e Library code may have to be tuned or even rewritten to meet for a particular application or
B environment, partially negating the claim of using well-tested code.
=
Even if fault detection is not an issue, the certification trail technique is useful during program
== testing and debugging. Input may be automatically generated and processed. If the output of the
= first and second executions differ or an error is otherwise flagged, the input set is flagged. This
~ reduces the need to otherwise compute output for selected input and enables both more and larger
£i sets of input to be processed. 2-version programming may be used during debugging in a similar
- manner, however certification trails have the advantage of reduced overhead, allowing more test
cases to be run, a reduction in the hardware required for testing, or both.

8.2 Almost-concurrent execution of the certification trail

In the above discussion and examples, the certification trail programs have been executed serially,
i.e., we do not run the second execution until after first execution completed. Actually, except for
sorting, the two executions in the examples above can be run almost-concurrently. The “second”
execution simply reads the information from the certification trail as it becomes available. The two
programs will finish nearly simultaneously, the difference being in the time after the last element
is read from or written to the certification trail.

=

i

o

1y

o
Tl 1

8.3 Continuing after an error

A possible extension to the use of certification trails is to attempt to continue the second execution
after an error is detected. Consider the shortest path example using abstract data types. In
that example, the second execution used an indexed linked list that performed each operation in
constant time by using the certification trail from the first execution. Suppose that an error had
been detected during the second execution. Rather than simply aborting, it may be possible to
continue execution. This could be done by

il

i

= ¢ Reorganizing the existing set into some other data structure (such an AVL tree, red-black
_ tree, etc.) that allows efficient operation without a certification trail.

i 25

m

i [l sl

I

Py

I |

¥

il

I

i

¢ Continuing to use the indexed linked list and ignoring the rest of the certification trail. Note
that this would result in some operations requiring more time.

o Continuing to use the indexed linked list and attempting to use the certification trail for future
operations. This may be possible if the error that occurred has sufficiently “local” effect. For
example, if part of a tree structure is corrupted during the first execution, it is still possible
that operations involving other parts of the tree will be performed correctly.

On a related topic, research has been done on “self-correcting” data structures in which enough
redundancy is built into a data structure so that it may be reconstructed if part of it is corrupted.
Using certification trails with such structures could provide an efficient detector for corruption of
the data structure.

References

[1] Adel’son-Vel'skii, G. M., and Landis, E. M., “An algorithm for the organization of informa-
tion”, Soviet Math. Dokl., pp. 1259-1262, 3, 1962.

{2] Anderson, T., and Lee, P., Fault tolerance: principles and practices, Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[3] Avizienis, A., “The N-version approach to fault tolerant software,” IEEE Trans. on Software
Engineering, vol. 11, pp. 1491-1501, Dec., 1985. .

(4] Babai, L., Fortnow, L., Levin, L., and Szegedy, M., “Checking computations in polylogarithmic
time, ” Proceedings of the 23rd ACM Symposium on Theory of Computing, pp. 21-31, 1991.

[5] Bayer, R., and McCreight, E., “Organization of large ordered indexes”, Acta Inform., pp
173-189, 1, 1972.

(6] Blum, M., and Kannan, S., “Designing programs that check their work”, Proceedings of the
1989 ACM Symposium on Theory of Computing, pp. 86-97, ACM Press, 1989.

[7] Blum, M., Luby, M., and Rubinfeld, R., “Self-testing/correcting with applications to numerical
problems,” Proceedings of the 22nd ACM Symposium on Theory of Computing, pp. 73-83, 1990.

[8] Blum, M., Evans, W., Gemmell P., Kannan, S., and Naor, M., “Checking the correctness of
memories,” Proceedings of the §2nd IEEE Symposium on Foundations of Computer Science
PpP- 90-99, 1991

[9) Chen, L., and Avizienis A., “N-version programming: a fault tolerant approach to reliability of
software operation,” Digest of the 1978 Fault Tolerant Computing Symposium, pp. 3-9, IEEE
Computer Society Press, 1978.

[10] Cormen, T. H., and Leiserson, C. E., and Rivest, R. L., Introduction to Algorithms McGraw-
Hill, New York, NY, 1990.

[11] Dijkstra, E. W., “A note on two problems in connexion with graphs,” Numer. Math. 1, pp.
269-271, Sept., 1959.

[12) Gemmell, R., Lipton, R., Rubinfeld, R., Sudan, M., and Wigderson, A., “Self-
testing/correcting for polynomials and for approximate functions,” Proceedings of the 23rd
ACM Symposium on Theory of Computing, pp. 32-42, 1991.

- 26

-

[13]) Graham, R. L., “An efficient algorithm for determining the convex hull of a planar set”,
Information Processing Letters, pp. 132-133, 1, 1972.

(14] Guibas, L. J., and Sedgewick, R., “A dichromatic framework for balanced trees”, Proceedings

of the Nineteenth Annual Symposium on Foundations of Computing, pp. 8-21, IEEE Computer
Society Press, 1978,

[15] Huang, K.-H., and Abraham, J., “Algorithm-based fault tolerance for matrix operations,”
IEEE Trans. on Computers, pp. 518-529, vol. C-33, June, 1984.

(16] Johnson, B., Design and analysis of fault tolerant digital systems Addison-Wesley, Reading,
MA, 1989.

I

(17] Jou, J.-Y. and Abraham, J. “Fault tolerant FFT networks,” Dig. of the 1985 Fault Tolerant
Computing Symposium, pp. 338-343, IEEE Computer Society Press, June, 1985.

(18] Lee, Y.H. and Shin, K.G., “Design and evaluation of a'fault-tolerant multiprocessor using
hardware recovery blocks,” IEEE Trans. Comput., vol. C-33, pp. 113-124, Feb. 1984.

[19] Nair, V., and Abraham, J., “General linear codes for fault-tolerant matrix operations on

Processor arrays,” Dig. of the 1988 Fault Tolerant Computing Symposium, pp. 180-185, June,
1988.

(
I

[20] Preparata F. P., and Shamos M. 1., Computational geometry: an introduction, Springer-Verlag,
New York, NY, 1985.

‘\II I
liii i

i

|

[21] Randell, B., “System structure for software fault tolerance,” IEEE Trans. on Software Engi-
neering, vol. 1, pp. 220-232, June, 1975.

I

1

[22] Siewiorek, D., and Swarz, R., The theory and practice of reliable design, Digital Press, Bedford,
MA, 1982.

i

[23] Tarjan, R. E., “Applications of path compression on balanced trees”, J. ACM, pp. 690-715,
Oct., 1979.

e
‘1 i L, o

(24] Paul Wallich, “Crunching Epsilon,” Scientific American, pp. 22-24, Jan., 1993

[25] Andrew Chi-Chih Yao, “Coherent Functions and Program Checkers,” Proc. 22 ACM Symp. of
Theory of Computing, pp. 84-94.

b b

o

L

I

1T

ST
i

27

"
|

| [y

Finally we discuss the work our group has performed on the
design and implementation of fault injection testbeds for experi-
mental analysis of the certification trail technique This work em-
ploys two distinct methodologies: software fault injection (mod-
ification of instruction, data, and stack segments of programs on
a Sun Sparcstation ELC and on an IBM 386 PC) and hardware
fault injection (control, address, and data lines of an Motorola
MC68000-based target system pulsed at logical zero/one values).
Our results indicate the viability of the certification trail tech-
nique. We also believe the tools we have developed provide a
solid base for additional exploration.

Keywords: Software fault tolerance, certification trails, error
monitoring, design diversity, data structures.

1 Introduction

Certification trails are a recently introduced and promising approach to
fault-detection and fault-tolerance [1, 3]. In this paper, we report on a com-
prehensive attempt to assess experimentally the performance and overall
value of the method. We have implemented several fundamental algorithms
together with versions of the algorithms which generate and utilize certifica-
tion trails. Specifically, algorithms for the following problems are analyzed:
huffman tree, shortest path, minimum spanning tree, sorting, and convex
hull. Our results reveal many cases in which an approach using certification
trails allows for significantly faster overall program execution time than a
basic time redundancy approach.

We also examine algorithms for the answer-validation problem for ab-
stract data types. This kind of problem was originally proposed in [3] and
provides a basis for applying the certification-trail method to wide classes of
algorithms. For this paper we implemented and analyzed answer-validation
solutions for two abstract data types. The first solution is for a simplified
priority queue which allows insert, min and deletemin operations, and the
second solution is for a priority queue which allows insert, min, delete and
deletemin operations. In both cases, the algorithm which performs answer-
validation is substantial faster than the original algorithm for computing the
answers.

This paper next presents a simple probabilistic model and analysis which
enables comparison between the certification-trail method and the time-

PRERESNG PAGE W, 000k 10T FILMM)

it}

.l

(i

|,

m
i kst

!
i

;|
il

L

redundancy approach. The analysis shows that when the certification-trail
method has a smaller execution time than the time-redundancy approach
it yields strictly superior performance. This means the method has both
a a smaller probability of error and a smaller probability of undetected
error. Surprisingly, the analysis also reveals the intriguing result that the
certification-trail method often can display superior performance even when
the method has the same execution time or a longer execution time than the
time-redundancy approach. This superior behavior stems from the typical
assymetry of the execution times of the first and second executions in the
certification-trail method.

The paper next discusses the work our group has performed on the design
and implementation of fault injection testbeds. This work employs two
distinct methodologies: software fault injection and hardware fault injection.
The software fault injection tool is similar to an interactive debugger but
more accurately can be considered an interactive bugger. It allows programs
to be halted and faults to be injected by direct modification of the stack,
data and instruction segments of a program. QOutput can then be captured
and characterized.

The hardware fault injector is based on injecting faults into an operating
microprocessor. The injection is performed by explicitly setting one or more
pins of the microprocessor to logical zero and/or logical one values. The
timing and duration of the pin setting is under control of a supervisory
processor. The testbed also includes a multi-processor system. This system
consists of three processors which are connected to one another pairwise by
shared banks of dual ported memory. We plan to use this system to conduct
evaluation of systems which utilize concurrent execution of algorithms using
the certification-trail method.

2 Introduction to Certification Trails

To explain the essence of the certification-trail technique for software fault
tolerance, we will first discuss a simpler fault-tolerant software method. In
this method the specification of a problem is given and an algorithm to solve
it is constructed. This algorithm is executed on an input and the output is
stored. Next, the same algorithm is executed again on the same input and
the output is compared to the earlier output. If the outputs differ then an
error is indicated, otherwise the output is accepted as correct. This software
fault tolerance method requires additional time, so-called time redundancy

Hﬂ

Ul

L HIl i

t L

(-

(32, 52]; however, it requires no additional software. It is particularly valu-
able for detecting errors caused by transient fault phenomena. If such faults
cause an error during only one of the executions then either the error will be
detected or the output will be correct. The second possibility, of undetected
faults, occurs when the output of the execution is unaffected by the faults.

A variation of the above method uses two separate algorithms, one for
each execution, which have been written independently based on the problem
specification. This technique, called N-version programming [16, 12] (in
this case N=2), allows for the detection of errors caused by some faults
in the software in addition to those cause by transient hardware faults and
utilizes both time and software redundancy. Errors caused by software faults
are detected whenever the independently written programs do not generate
coincident errors.

The certification-trail technique is designed to obtain similar types of
error-detection capabilities but expend fewer resources. The central idea,
as illustrated in Figure 1, is to modify the first algorithm so that it leaves
behind a trail of data which we call a certification trail. This data is chosen
so that it can allow the the second algorithm to execute more quickly and/or
have a simpler structure than the first algorithm. As above, the outputs of
the two executions are compared and are considered correct only if they
agree. Note, however, we must be careful in defining this method or else
its error detection capability might be reduced by the introduction of data
dependency between the two algorithm executions. For example, suppose
the first algorithm execution contains an error which causes an incorrect
output and an incorrect trail of data to be generated. Further suppose
that no error occurs during the execution of the second algorithm. It still
appears possible that the execution of the second algorithm might use the
incorrect trail to generate an incorrect output which matches the incorrect
output given by the execution of the first algorithm. Intuitively, the second
execution would be “fooled” by the data left behind by the first execution.
The definitions we give below exclude this possibility. They demand that
the second execution either generate a correct answer or signal that an error
has been detected in the data trail.

3 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and
discuss some aspects of its realizations and uses.

"
&

m..mwn '
kil

| A

N94- 36064
Certification of Computational Results /58 57/

Gregory F. Sullivan!
Dwight S. Wilson?
Gerald M. Masson?

Dept. of Computer Science, Johns Hopkins Univ., Baltimore, MD 21218

Abstract

We describe a conceptually novel and powerful technique to achieve fault detection
and fault tolerance in hardware and software systems. When used for software fault
detection, this new technique uses time and software redundancy and can be outlined as
follows. In the initial phase, a program is run to solve a problem and store the result.
In addition, this program leaves behind a trail of data which we call a certification trail.
In the second phase, another program is run which solves the original problem again.
This program, however, has access to the certification trail left by the first program.
Because of the availability of the certification trail, the second phase can be performed
by a less complex program and can execute more quickly. In the final phase, the two
results are compared and if they agree the results are accepted as correct; otherwise an
error is indicated. An essential aspect of this approach is that the second program must
always generate either an error indication or a correct output even when the certification
trail it receives from the first program is incorrect. We formalize the certification trail
approach to fault tolerance and illustrate realizations of it by considering algorithms
for the following problems: convex hull, sorting, and shortest path, We discuss cases in
which the second phase can be run concurrently with the first and act as a monitor. We
compare the certification trail approach to other approaches to fault tolerance.

Keywords: Software fault tolerance, error monitoring, design diversity, data structures.

1 Introduction

In this paper we describe a novel and powerful technique for achieving fault tolerance in systems.
Although applicable to both hardware and software implementation, we restrict our discussion
of this technique to implementation in software. To explain our technique, we will first discuss
a simpler method. In this method the specification of a problem is given and an algorithm to
solve it is constructed. This algorithm is executed on a particular input and the output is stored.
Next, the same algorithm is executed again on the same input and the output is compared to the
earlier output. If the outputs differ then an error is indicated, otherwise the output is accepted
as correct. This method requires additional time, so called time redundancy [16, 22]; however, it
requires no additional software. It is particularly valuable for detecting errors caused by transient
fault phenomena. If such faults cause an error during only one of the executions then either the
error will be detected or the output will be correct.

A variation of the above method uses two separate algorithms, one for each execution, which have
been written independently based on the problem specification. This technique, called N-version
programming [9, 3] (in this case N=2), allows for the detection of errors caused by some faults in

'Research partially supported by NSF Grants CCR-8910569 and CCR-8908092.
?Research partially supported by NSF Grant CDA-9015667.
3Research partially supported by NASA Grant NSG 1442.

f. 27

(et

1!

I

|H

First Execution

Duplicate Certification Trail

Compare

or Error

Second Execution

Figure 1: Certification trail method.

the software in addition to those caused by transient hardware faults and utilizes both time and
software redundancy. Errors caused by software faults are detected whenever the independently
written programs do not generate coincident errors.

A significant drawback to the above approaches is the overhead required. FEither extra time
is required to run the algorithms serially on a single processor or extra hardware is required to
run them in parallel. The technique we will describe is designed to achieve similar types of error
detection capabilities while reducing the required resource overhead. The central idea, as illustrated
in Figure 1, is to modify the first algorithm so that it leaves behind a trail of data which we call a
certification trail. This data is chosen to allow the second algorithm to execute more quickly and/or
have a simpler structure than the first algorithm. As above, the outputs of the two executions are
compared and are considered correct only if they agree. Note, however, that we must be careful in
defining this method or else its error detection capability might be reduced by the introduction of
data dependency between the two algorithm executions. For example, suppose the first algorithm
execution contains an error which causes an incorrect output and an incorrect trail of data to be
generated. Further suppose that no error occurs during the execution of the second algorithm. It
appears possible that the execution of the second algorithm might use the incorrect trail to generate
an incorrect output which matches the incorrect output produced by the first algorithm. Intuitively,
we can regard the two executions as “adversaries.” The second execution must guard against an
incorrect certification trail “fooling™ it into producing an incorrect output. The definitions we give
below exclude this possibility. They demand that the second execution either generates a correct
answer or signals the fact that an error has been detected in the certification trail.

2 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and discuss some aspects of
its realizations and uses.

Definition 2.1 A problem P is formalized as a relation, i.e., a set of ordered pairs. Let D be the
domain (that is, the set of inputs) of the relation P and let S be the range (that is, the set of
solutions) for the problem. We say an algorithm A solves a problem P iff for all d € D when d is
input to A then an s € S is output such that (d,s) € P.

Definition 2.2 Let P : D — S be a problem. A solution to this problem using a certification
trail consists of two functions Fj and F; with the following domains and ranges /1 : D - Sx T
and F; : D x T — S U {error}. T is the set of certification trails. The functions must satisfy the
following two properties:

(1) for all d € D there exists s € S and there exists ¢t € T such that
Fi(d) = (s,t) and F3(d,t) = s and (d,s)€ P
(2)forallde D and forallte€ T
either (F3(d,t) = s and (d, s) € P) or F3(d,t) = error.

We also require that F; and F; be implemented so that they map elements not in their respective
domains to the error symbol. The definitions above assure that the error detection capability of
the certification trail approach is comparable to that obtained with the simple time redundancy
approach discussed earlier. (That is, if transient hardware faults occur during only one of the
executions then either an error will be detected or the output will be correct.) It should be further
noted, however, that the examples to be considered will indicate that this approach can also save
overall execution time.

The certification trail approach also allows for the detection of faults in software. As in 2-
version programming, separate teams can write the algorithms for the first and second executions.
Note that the specification now must include precise information describing the generation and
use of the certification trail. Because of the additional data available to the second execution,
the specifications of the two phases can be very different; similarly, the two algorithms used to
implement the phases can be very different. (This will be illustrated in the convex hull example to
be considered later.) Alternatively, the two algorithms can be very similar, differing only in data
structure manipulations. (This will be illustrated in the shortest path example to be considered
later.) When significantly different algorithms are used, the probability that both algorithms will
contain or be affected by faults which generate matching errors should be reduced. When very
similar algorithms are used it is sometimes possible to save programming effort by sharing program
code. For example, the code implementing any data structures needed by the program might be
different, while the code that uses the data structure operations would be the same. This approach
is well suited for the creation of libraries of fault-tolerant data structures. While this reduces the
ability to detect errors in the software it does not change the ability to detect transient hardware
errors as discussed earlier. Furthermore, in situations like the above example, it is possible (perhaps
even probable) that the majority of software errors will be in the data structure implementation.
Thus the ability to detect software errors may not be reduced as much as first imagined.

Throughout this section we have assumed that our method is implemented with software, how-
ever, it is clearly possible to implement the method with assistance from dedicated hardware. It
is also possible to generalize the basic idea we have suggested. We discuss some of these gener-
alizations in a later section. Finally, we note that a wide variety of approaches to software fault
tolerance have been proposed and we contrast our method to the most closely related ideas in a
later section.

In the following two sections we illustrate the application of certification trails to three well-
known and significant problems in computer science: the convex hull problem, sorting, and the
shortest path problem. It should be stressed that the certification trail is not limited to these
problems. Rather, these algorithms have been selected for illustrative purposes.

3 Certification Trails for Convex Hulls

The convex hull problem is a fundamental one in computational geometry. Our certification trail
solution is based on a solution due to Graham [13] called Graham’s Scan. For basic definitions in
computational geometry see the text of Preparata and Shamos [20]. This text also illustrates some
statistical applications of convex hull computations. For simplicity in the following discussion we
will assume the points are in so called general position, i.e., no three points are co-linear. It is not
difficult to remove this restriction.

Definition 3.1 The convez hull of a set of N points, S, in the Euclidean plane is defined as the
smallest convex polygon enclosing all the points. This polygon is unique and its vertices are a
subset of the points in §. It is specified by a counterclockwise sequence of its vertices.

The algorithm given below constructs the convex hull incrementally in a counterclockwise fash-
jon. Sometimes it is necessary for the algorithm to “backup” the construction by throwing some
vertices out and then continuing. The first step of the algorithm selects the point with minimum
x-coordinate (using minimum y-coordinate to break ties), and calls it p;. For each other point ¢
in § we compute the slope of the line p1g. Sort the points of S (except for py) by this slope (since
the points are in general position, the slopes are distinct). Number these vertices pz, p3,...,PN-
It is not hard to show that after these three steps the points when taken in order, p1,p2,-- -, Pn;
form a simple polygon; although this polygon might not be convex. It is possible to think of the
algorithm as removing points from this simple polygon until it becomes convex. This code below
performs this by “walking” through the vertices in order. The main FOR loop iteration adds points
to the polygon under construction. After a point is added, the inner WHILE loop checks the angle
formed by the addition of this point. (Note: We measure angles as follows: Given the three points
Gm-1,¢m, Pk We measure the angle from gm_1gm 10 gmpsi in the clockwise direction.) If the angle
is not acute (i.e., it makes the the polygon non-convex), then the angle vertex (i.e., the preceding
point on the polygon) is removed. Note that this will change the preceding angle, which may
now be obtuse and should be eliminated. The WHILE loop terminates when an acute angle is
encountered. Figure 2 illustrates the construction of a convex hull using this algorithm. from the
hull.

When the main FOR loop is complete the convex hull has been constructed.

Algorithm CONVEXHULL(S)
Input: Set of points, S, in R?
Output: Counterclockwise sequence of points in R? which define convex hull of §
1 Let p; be the point with the smallest z coordinate (and smallest y to break ties)
2 For each point p (except py) calculate the slope of the line through p; and p
3 Sort the points (except p;) from the smallest slope to the largest.
Call them p;,...,pn
4 qui=pi @i=p @i=p3 m=3
5 FORk=4tonDO :
6 WHILE the angle formed by gm—1,qm, Pk is > 180 degrees DO
7
8

m:=m-1
END WHILE
9 m:=m+1
10 gm:=p:
11 END FOR

12 FOR i = 1 to m DO, OUTPUT(¢;) END FOR

4

¢

s
i

[T

)
ﬁ H‘
o

Figure 2: Convex hull example.

END CONVEXHULL

First execution: To generate a certification trail for this algorithm, we rely on the property
that for each point eliminated by the WHILE loop in the code above, we can produce a triangle of
points in § containing the eliminated point.

Theorem 3.2 Letp, a, b, and ¢, be points in the plane such that no three are co-linear, p has the
smallest 1 -coordinate of the four points (and the smaller y-coordinate if another other point has the
same z-coordinate) slope(pa) < slope(pb) < slope(pc). If the angle abe is obtuse (measured in the
clockwise direction), then b is inside the triangle pac.

Proof: By the ordering of the slopes, b is inside the triangular wedge determined by the rays
pa and pe. Note that the line segments pa and pe are in the half plain z > p,, and in at least one
case the inequality is strict, since no three points are co-linear. This implies that the angle ape (in
the clockwise direction) must be greater than 180 degrees. Since the angle abe is also obtuse, both
p and b must be on the same side of line @@, Therefore, b is inside the triangle pac. |

Corollary 3.3 During ezecution of CONVEXHULL, if, after adding Pk, the angle formed by
qm-1,9m, Pk is obtuse (measured in the clockwise direction), then gq,, is contained in the triangle

P1,9m-1, Pk-

Proof: slope(Pigm=1) < slope(Pigm) < slope(pipr). |

In the first execution the code CONVEXHULL is used. The certification trail is generated by
- adding an output statement within the WHILE loop. Specifically, if an angle greater than 180
degrees is found in the WHILE loop test then the 4-tuple consisting of gm, gm-1, P1, P& is output to
the certification trail. The table below shows the 4-tuples of points that would be output by the
algorithm when run on the example in Figure 2. The points in the table are given the same names
as in Figure 2. The final convex hull points ¢;,...,qm are also output to the certification trail.
Finally, the trail output does not consist of the actual points in R2. Instead, it consists of indices
to the original input data. This means if the original g§[§7§9}1518t8 of 81,32,...,3n then rather than
outpuf ‘the element in R? correspondmg to 73,' The number { is output. If pomt coordinates were
output instead of these indices, the second execution would have to verify that the points on the

tra.ll are members of S.

| lel \ | P

Point not on convex hull Three surrounding points
S S S Pe,1, P2
— ps Ps: P1, P4
pr P31, Ps

SRS T

Second execution: Let the certification trail consist of a set of 4-tuples, (z1, a1, 41, ¢1), (22, a2,b3,¢2),
» (2r,a,,b,,¢,) followed by the supposed convex hull, q1,¢2,...,gm- The code for CONVEX-
HULL is not used in this execution. Indeed, the algorithm performed is dramatlca.lly different than

CONVEXHULL.
It consists of five checks on the trail data.
;i—— -i. That_ Lb%j. one to one correspondence between the input points and the points in
{z1,.. 2 3 U{q1, -1 qm)}
m— ii. That for ¢ € {1 .,T}, a;, b;, and ¢; are among the input points.
iii. Forie {1 .,7} that z; lies within the triangle defined by a;,b;, and ¢;.
- iv. That for each triple of counterclockwise consecutive points on the supposed convex hull the
angle formed by the points is acute.
e v. That there is a unique point among the points on the supposed convex hull which is a locally
maximal point. We say a point ¢ on the hull is a local mazimum point if its predecessor in the
o counterclockwise ordering has a strictly smaller y coordinate and its successor in the ordering
R has a smaller or equal y coordinate.
- If any of these checks fail then execution halts and “error” is output. As mentioned above, the
~-=: . trail data actually consists of indices into the input data. This does not unduly complicate the
" checks above; in fact it makes it easier to verify the first and second conditions.
Time complexity: In the first execution the sorting of the input points takes O(nlog(n)) time
» == . where n is the number of input points. One can show that this cost dominates and the overall
complexity is O(nlog(n)).
It is possible to implement the second execution so that all five checks are done in O(n) time.

"~ Because indices into the input data are used, the first condition can be checked by verifying that
each index is used exactly once, and that all indices are between 1 and N. The second condition
may checked simply by verifying that each index is between 1 and N. Checking that a point lies

_F

(M)

|1

c: 1

Liil

within a triangle is a geometric calculation that can be done in constant time. Checking that the
angle formed by three points is acute requires only constant time. The third and fourth checks can
be done in O(n) because the certification trail contains indices into the input data as described
above. The uniqueness of the “local maximum™ requires only a constant time calculation at each
point, so it may checked in linear time.

Experimental timing data for this method may be found in Section 6.

3.1 Proof of correctness

We wish to prove that the algorithms above constitute a certification trail solution for the convex
hull problem. Although the definition is phrased in terms of functions, not algorithms, we can
simply define the functions Fy(d) and F3(d,t) on particular arguments as the values computed by
the associated algorithms.

Using our formal definition of certification trails, let D be the set of all finite planar point sets
T. Let S be the set of convex polygons, with vertices in counterclockwise order (the restriction to
counterclockwise ordering makes the convex hull unique). Then the problem we are considering is
HULL:D — S where HULI(T) is the polygon in S that forms the convex hull of T'.

The description of the algorithms above defines functions F; and F;. We must show that both
conditions of Definition 2.2 hold. The following two lemmas, which we state without proof, are
required.

Lemma 3.4 Let P be a polygon on n points py,p2,...,Pa. P is a convez polygon iff P is simple

_“w~and each angle p;p;p; is less than or equal to 180 degrees, where i is in 1,2,...n, j = (i + 1) mod ,
~and k = (i + 2) mod n.

Lemma 3.5 If P is a non-simple polygon, then either P has more than one local mazima, or the
interior angle at some vertez is greater than 180 degrees.

Theorem 3.8 F\(d) and F3(d,t), as defined above, constitute a certification trasl solution for the
problem HULL.

Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.

Part 1: Recall that the first condition is: for all d € D there exists s € S and t € T such
that Fy(d) = (s,t) and F3(d,t) = s and (d, s) € P. Intuitively, this means that if both executions
perform correctly, then they will both output the convex hull of the input, which is unique. Note
that generation of the certification trail does not affect the output of the Graham Scan algorithm.
Thus the condition on F(d) is satisfied by the correctness of the Graham Scan algorithm, the proof
of which is well known [20}. To show that F3(d,t) = s, note that a copy of s is contained on the
trail £. Our description of F3(d,t) states that s is output unless one of the five checks above fails.
It is trivial to verify that the first three of these checks must be satisfied. The fourth check cannot
fail, since the polygon described by s is convex (because (d,s) € P). Similarly, if the fifth check
fails, then the polygon described by s has two local maxima, and this is not possible for a convex
polygon.

Part 2: The second condition is: for all d € D all t € T either (F3(d,t) = s and (d,s) € P) or
F3(d,t) = error. Intuitively, this means that given an input and arbitrary trail, F3(d,t) produces a
solution to the problem or flags an error. Our definition of F3(d,t) states that the polygon Q stored
on the trail is output unless one of the five checks fails. We must therefore demonstrate that if all
five checks succeed, then Q is the convex hull of the input points d. Let H be the convex hull of
the points d. The first condition guarantees that every point in d is classified as a hull point or an

7

w interior point. The second condition guarantees that the triangles used to identify interior points
. . are formed from input points, and the third check verifies that the interior points are indeed inside

i_the ones that would be produced by Fi(d). In general, for a given interior point, there may be
several triangles of input points in which it is contained. Together, the first three conditions imply
that all points in & are also in Q, since it is impossible for a hull point to be contained in a triangle.
1 Note that these three checks do not exclude the Possibility that interior points are Present in Q,

will accomplish this. If the last two checks are satisfied, Lemma 3.5 states that Q is simple, and
T _therefore it must be convex by Lemma 3.4.
Thus, Q is a convex polygon whose vertex set is a superset of the vertices of A, ie, H is
. ~-ontained in Q. This implies that no other point from the input set may be a vertex of Q, since any
nput point that is not a hull point is interior to A and therefore interior to Q. Finally, it is clear
that the ordering of the vertices of Q@ and H must be the same (although there might appear to
. ¢ two possible orderings, clockwise and counterclockwise, a clockwise ordering will fail the fourth
-Eheck). Therefore if all five checks succeed, then the output of F3(d,t) will be the convex hull of d.
This demonstrates that the algorithms described meet the conditions of Definition 2.2, and are
herefore a certification trail solution to the convex hull problem. |

il

3.2 Other convex hull algorithms

Let H = ¢, 42:93..-,qn be the convex hull of a set of n points. We label the points so that Q1 is
. point with smallest abscissae (and smallest ordinate in case of a tie). Since H is convex, the

L maining points occur in sorted angular order around ¢;,. Now for each non-hull point p, we may
_determine which triangle p, p;p; 4, it lies in with a binary search. Thus we may determine containing
. angles for the non-hull points in O(nlogh) time. Under several distributions the number of hul]
" ints is much smaller than the number of input points [20] so this overhead will often be quite
.small.

& Sorting

3 =

Oriiterature discussing sorting and a significant fraction of computer time is spent performing sort
Operations. We will see how the certification trail approach may be applied to this problem. Assume
'u&t a particular sorting algorithm takes as input an array of n elements and outputs an array of
nelements. The algorithm is supposed to place the data into non-decreasing order.

\ certification trail is required to perform this check efficiently.

| H]nl\ "
[iRis

ONGINAL PAGE 18
OF POCR QUALITY

I ol \"I

A
i

#

v

ot
IN.A

)

!

[
I

|" I

I

(I

I
iy
L

o
|

1]

The information placed on the trail is a permutation relating the input and output arrays. This
permutation is created by adding an Item Number field to the elements being sorted, such that the
i-th element is labelled with item number i. After sorting, the permutation is obtained by reading
the Item Numbers from the elements in their new order.

The second algorithm reads the permutation from the trail, uses it to rearrange the input elements
in linear time, and checks that they are now in sorted order. Additionally, it is necessary to check
that the the information on the certification trail actually is a permutation of n elements, i.e., each
number from 1 to n occurs exactly once. Should any of these checks fail, the second algorithm
outputs “error”, otherwise it outputs the sorted elements.

Note that the certification trail given for sorting is quite different than that given for the convex
hull problem. In the latter case, the certification trail was constructed for a particular algorithm,
and the code executing that algorithm modified to produce the trail. In this case, the sorting
algorithm is not changed. Instead the data being sorted is modified by a preprocessing step, and the
necessary information extracted by a postprocessing step. Thus this technique may be implemented
as a “wrapper” around existing sort routines, no matter which algorithm is implemented.

Experimental data is presented in Section 6.

4.1 Proof of correctness

For concreteness we consider only the sorting of integers, though the proof does not depend on this
condition.

Definition 4.1 Let D consist of all finite sequences of integers. Let S consist of all finite non-
decreasing sequences of integers. Let P : D — S be the sorting problem, i.e., (d,s)e Piff sis a
permutation of d (by definition of S, sis a non-decreasing sequence). Note that for every d € D,
there is a unique s € S such that (d,s) € P. Let T consist of finite sequences of integers. For z a
member of any of the sets D, S, or T, we will also denote the sequence of integers by z,, z,, ..., zn.

Definition 4.2 The function F, : D — S x T is defined as follows, Given an input sequence d
of N integers, Fi(d) = (s,t) where s is the unique element of S such that, (d,s) € P and t is a
permutation of 1,2,3,...,N s.t., s; = d;, forall i = 1,2,...N. Note that unless d consists of N distinct
integers, there will be more than one possible ¢. The ¢ produced by Fi(d) may be chosen arbitrarily.
Since for every d € D, there exists a unique s € S with (d, s) € P, the function F) is well defined.

Definition 4.3 The function Fy : DxT — Su{error} is defined as follows. Fy(d,t) = dy,, dy,, ..., d;
(where d consists of N integers) iff

N

i. ¢ contains at least N integers.
ii. The first N integers of ¢ are a permutation of {1,2,..N}.
iii. dy, < dy,,, fori=1,2,.. ,N-1.

Otherwise, F3(d,t) = error. Note that though ¢ may contain more than N integers, F3(d,t)
depends only on the first N.

The definitions of the functions F; and and F3 correspond to the informal descriptions of the
sorting algorithms given in the text above.

Theorem 4.4 F and F; are a certification trasl solution to the sorting problem P.

i i

C

[ww\ e
Jbiblic i

Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.

Part 1: We must prove that for all d € D there exists s € S and t € T such that Fi(d) = (s,¢)
and Fp(d,t) = s and (d,s) € P. If Fi(d) = (s,t), then by definition (d,s) € P. We must show
that F3(d,t) = s. tis a permutation of {1,2,..., N}, so the first two conditions of Definition 4.3 are
satisfied. Furthermore, by Definition 4.2, d;, = s, fori = 1,2,...N. Since s € S,itisa nondecreasing
sequence, and thus the third condition of Definition 4.3 is satisfied. Therefore F3(d,t) = s.

Part 2: We must show that for all d € D and all ¢ € T either (F(d,t) = s and (d,s) € P)
or Fy(d,t) = error. Pick d € D with length N. Pick t € T. The interesting case is when ¢ is a
permutation of {1,2,..., N}. If not, then either the first NV integers of ¢ are not such a permutation,
in which case F3(d, t) = error. We may ignore the possibility that ¢ consists of such a permutation
followed by more integers, since F; depends only on the first N integers of t.

Examine the sequence d,,dy,,,,d;,. If there is an i such that d;, > d 41 then the third condition
of Definition 4.3 is violated so F3(d,t) = error. Otherwise F3(d,t) = d;,,dy,, ..., dt,. Furthermore,
this is a non-decreasing sequence, so it must be in S. Finally, since this sequence is a permutation
of d, (d, F3(d,t)) € P.

Therefore, both conditions of Definition 2.2 are satisfied, so F; and F; constitute a certification
trail solution to sorting. |l

Note that we defined T as the set of all finite sequences of integers. We could have instead defined
T as the set of permutations of {1,2,...N} for all positive N. This would make the function F;
“simpler”, in that it doesn’t have to verify that that certification trail consists of a permutation (it
would, however, have to verify that it consists of a permutation of the correct size). In this case,
checking that the trail ¢ is indeed a permuation (i.e., actually in its domain) would be left to the
implementation of the function.

5 Certification Trails for Shortest Paths

This classic problem has been examined extensively in the literature. Our approach is applied to

a variant of the Dijkstra algorithm [11] as explicated in [10). First we require some preliminary
definitions.

Definition 5.1 A graph G = (V, E) consists of a vertez set V and an edge set E. An edge is an
unordered pair of distinct vertices which we notate with the following style: [v, w] and we say v is
adjacent to w. A path in a graph from vy to vg is a sequence of vertices vy,0q,...,v; such that
[vi, ¥i41] is an edge for i € {1,...,k — 1}. Let w be a real function defined on E. The length of a
path from v; to vy is the sum of w([v;, vi41]) for each edge [vi, vi41] in the path.

Let G = (V| E) be a graph and let w be a positive rational valued function defined on E. Given
a vertex vy in V, find a set of shortest paths from v, to each other vertex in V. Note that since w
is positive on all edges, a shortest path must exist between any two vertices, though it need not be
unique.

Before we discuss the algorithm we must describe the properties of the principal data structure
that are required. Since many different data structures can be used to implement the algorithm, we
initially describe abstractly the data that can be stored by the data structure and the operations
that can be used to manipulate this data. The data consists of a set of ordered pairs. The first
element in these ordered pairs is referred to as the item number and the second element is called
the item value or just value. Ordered pairs may be added and removed from the set, however, at
all times the item numbers of distinct ordered pairs must be distinct. It is possible, though, for

10

0

e

 Hllibg

L

I e

it
i

A

0o

I

|

T

multiple ordered pairs to have the same item value. In this paper the item numbers are integers
between 1 and n, inclusive. Our default convention is that i is an jtem number, r is a value and
h is a set of ordered pairs. A total ordering on the pairs of a set can be defined lexicographically

as follows: (i,z) < (,2')iff z < 2’ or (z = 2’ and i <). Our data structure should support a
subset of the following operations.

member(i, h) returns a boolean value of true if A contains an ordered pair with item number i,
otherwise returns false.

insert(i, z, h) adds the ordered pair (1, z) to the set A.
delete(i, h) deletes the unique ordered pair with item number i from A.

changekey(i, z, k) is executed only when there is an ordered pair with item number § in h. This
pair is replaced by (i, z).

deletemin(h) returns the ordered pair which is smallest according to the total order defined above
and deletes this pair. If A js the empty set then the token “empty” is returned.

predecessor (i, h) returns the item number of the ordered pair which immediately precedes the pair

with item number i in the total order. If there js no predecessor then the token “smallest” is
returned.

A description such as the one above describes an abstract data type. There may be several
possible implementations for a particular ADT. In our solution, different ADT implementations
will be used for the two executions. The first implementation will produce a certification trail
allowing the second implementation to be simpler and to perform ADT operations more quickly.

Aside from the implementation of the abstract data type, both of our algorithms are the same.
Pidgin code for this algorithm appears below. Figure 3 illustrates the execution of the algorithm
on a sample graph. Table 1 records the data structure operations performed when the algorithm
is run on the sample graph. The first column gives the operations, with the parameter kA omitted
to reduce clutter. Member operations are also omitted from the table. The second column gives
contents of h after the execution of each instruction. The third column records the order pair
deleted by deletemin operations. The fourth column records the information (if any) output to the
certification trail by this operation.

This certification trail is created by modifying the insert(i, z, A) and changekey(4, z, h) operations
performed during the first executjon. The modified instructions perform the same operations
described above and in addition output the following information to the certification trail,

insert(i,z,h) Qutput the item number of the predecessor of (i,z) (as defined above) to the trail.
If there is no predecessor, output the token “smallest”. Note that depending on the data

structure implementation, the predecessor may already be computed during insertion or may
require a separate call to the predecessor(i, h) operation.

changekey(i, z, h) Output the predecessor of the ordered pair (,z) (i.e., pair resulting from the
change) to the trail. If there is no predecessor, output the token “smallest” to the trail.

We shall see that this information allow
used for our second algorithm.

The algorithm proceeds by maintaining a set § of vertices for which shortest path lengths are
known, and a “frontier” set F of vertices adjacent to members of S along with the best known path

s a faster and simpler data structure implementation to be

11

(e

v

g e

O 00~ bW

TN

=

==
—

length from v;. At each step, we find the vertex v in F with smallest known path length and place
it in §, F is then updated by examining the neighbors of v. New vertices may be added to Fora
shorter path (passing through v) may be found to existing vertices in F.

To efficiently find the vertex to add to S, the algorithm uses the data structure operations
described above. As soon as a vertex v is adjacent to some vertex u in S, it is inserted in the set
F. The value for v is the shortest known path to v, which is the value of u (shortest path to)
Plus the weight of edge vw. The array element prefer(v) is used to keep track of this “best” edge
connecting v to §. As the tree grows, information is updated by operations such as insert(i,z,h)
and changekey(i, z, h). The deletemin(h) operation is used to select the next vertex to add to the
span of the current tree. Note, the algorithm does not explicitly store paths. Implicitly, however,

if (v, z) is returned by deletemin, then prefer(v) indicates the predecessor of v on the shortest path
from v,.

Algorithm SHORTEST-PATH(G,v, ,weight)
Input: Connected graph G = (V, E) where V = {1,...,n} with edge weights.
Output: Lengths of shortest paths from v, to all other vertices.

FOR ALL u € V, u) := o0 END FOR
vl):=0
F := y;

WHILE F # ¢ DO
(v, k) := deletemin(F)
FOR EACH [v,w] € E DO
IF v) + weight([v, w]) < w) THEN
w) := v) + weight([v, w]); prefer(w) := v
IF member(w, F') THEN changekey(w, w), F)
10 ELSE insert(w, w), F) END IF
11 ENDIF
12 END FOR
13 END WHILE

14 FOR ALL u € V - {1}, OUTPUT(u)) END FOR
END SHORTEST-PATH

Note that this code may be easily modified to output the shortest paths as well as their lengths.

First execution: In this execution the SHORTEST-PATH code is used and the abstract data
type is implemented with a balanced search tree such as an AVL tree [1], a red-black tree [14], or
a b-tree [5]. In addition, an array indexed from 1 to n is used. Each element of this array contains
two fields, InSet, a boolean, and Value, storing the same type as the value used in the ordered
pairs. Initially, InSet is false for all array elements. The balanced search tree stores the ordered
pairs in h and is based on the total order described earlier. For each item number i, the InSet field
of the i-th array element is true if and only if there is a pair with item number ¢ in the set. The
Value field of the i-th array element stores the value of the pair with item number 1, if there is one
in the set. It is undefined if there is no such pair in the set. This array allows rapid execution of
operations such as member(i, h) and delete(i, h).

Second execution: This execution also uses the SHORTEST-PATH code, however, a different
data structure is used to implement the ADT. We call this data structure an indezed linked list
and it is depicted in Figure 5. It consists of an array and a doubly linked list. The array is indexed
from 0 to n and contains pointers to the elements of the linked list. Except for the first element,

12

I

!
{

 F

i

 Je

(B

A1/ AT (N (A 4]

i

Figure 3: Shortest path example.

13

.

o’
ue
o
I

 thil

liis

Y I |

i

I8N

hili

mz e

m
[

|34

il

E\

tl

Operation Set of Ordered Pairs Delete Trail
insert(2,50) (2,50) smallest
insert(3,60) (2,50),(3,60) 2
deletemin (3,60) (2,50)
insert(4,130) (3,60),(4,130) 3
insert(5,62) (3,60),(5,62),(4,130) 3
deletemin (5,62),(4,130) (3,60)
changekey(4,103) (5,62),(4,103) 3
deletemin (4,130) (5,62)
changekey(4,94) (4,94) smallest
insert(6,72) (6,72),(4,94) smallest
deletemin (4,94) (6,72)
deletemin (4,94)
deletemin empty

Table 1: Example of operations and trail.

each element in the list contains a data field storing an ordered pair. The first element stores a
special ordered pair (0, “smallest”) which is guaranteed to compare less than any other ordered
pair. The list is maintained in sorted order based on the total ordering defined above for ordered
pairs. This list represents the contents of the set s. The i-th element of the array points to the node
containing the ordered pair with item number 1, if such an element is present in A. Otherwise the
pointer is nil. The 0-th element of the array points to the node containing (0, “smallest™) Initially,
all pointers are nil except for the 0-th one. Using an ordered list allows us to perform deletemin(k)
operations quickly. The array provides rapid random access to the elements. We now describe the
implementation of the data structure operations.

insert(i,z,h) Read the next value from the certification trail. This value, call it 7, is the item
number of the ordered pair that will be the predecessor of (i,z) after it is inserted. To
insert this element, we follow the J-th array pointer to the list node containing the pair (j, y).
There is one special case, if “smallest” is read from the trail rather than an item number,
we follow the 0-th pointer. A new node is allocated and inserted into the list just after the
node containing (j,y). The data field of this node is set to (i, z). Finally, the i-th pointer is
set to point to the new node. Figure 5 shows the insertion of (5,62) into the data structure,
given that the next item on the certification trail is 3. When the insert(i, z, h) operation is
performed, some checks must be conducted:

i. The i-th array element must be nil before the operation is performed.

ii. The value j read from the trail must either be “smallest” or be between 1 and n, i.e., it
must be a valid item number.

iii. The j-th array element must not be nil before the operation is performed.

iv. The sorted order of the pairs stored in the linked list must be maintained. That is,
if the j-th pointer points to (j,y) and its successor before the insertion (ignoring the

14

e
L

L

e

Ly

o

|

i

U

Yo

R

{1 S 1] i

e

special case when (j,y) is the last element of the list) is (j',y’), then we must have
7y < (2) < (YY)

If any of these checks fails, then the execution halts and “error” is output.

delete(i, h) If the i-th pointer is nil, halt execution and output “error”. Otherwise follow the i-th
pointer to find the list node containing (i,z). This node is removed from the list. Note that
since the list is doubly linked, this is a constant time operation. The i-th pointer is then set

to nil. The only condition that must be checked is that the i-th pointer is not nil before the
deletion

changekey(i, z, k) To perform this operation, it suffices to perform delete(i, h) followed by insert(i, z,
The next item for the certification is read when the insert(i, z, k) operation is performed. If
any of the conditions required by either of these operations fails, then execution halts and
“error” is output.

deletemin(h) The 0-th array pointer is traversed to the list head (which contains (0, “smallest™)).
The pointer to the next node in the list is followed. If there is no next node then “empty” is
returned. Otherwise, let (7, z) be the pair stored in that node. We remove the node from the
list, set the i-th array element to nil, and return ({,z).

member(i,h) The i-th array pointer is examined. “False” is returned if it is nil, otherwise “true”
is returned.

predecessor(i, h) This operation is not used during the second execution of SHORTEST-PATH,
but is described for completeness. Follow the i-th pointer to the node containing the pair
(i, z). Follow the pointer from that node to the node preceding it on the list (note that this
node will always exist). If this is the special node (0, “smallest”), return “smallest™, otherwise
return the item number of the pair stored in this list.

There are two variations to this scheme that are worth noting. First, we could implement a
singly linked list rather than a doubly linked list. This eliminates the overhead of maintaining the
extra pointer. Note, however, that operations such as delete(i, h) require access to predecessors in
order to update the list quickly. This can be provided by modifying the operations delete(i, k),
changekey(i, z, k), and predecessor(i, h) so that they output predecessor information to the trail.

The other variation also uses a singly linked list but removes the need for extra certification trail
information for delete(i, k) and changekey(i, z, h) operations. It uses the technique of marking a
list node for deletion rather than removing them from the list node immediately (the appropriate
pointer in the array is still set to nil immediately). When performing other operations, we check
for and remove any marked nodes immediately following nodes visited. The total running time is
still linear, though insert operations are no longer constant time operations.

Time complexity: In the first execution each data structure operation can be performed in
O(log(n)) time where |V| = n. There are at most O(m) such operations and O(m) additional time
overhead where |E| = m. Thus, the first execution can be performed in O(mlog(n)) In addition,
it provides us with a relatively simple and illustrative example of the use of a certification trail.

In the second execution each data structure operation can be performed in O(1). There are still
at most O(m) such operations and O(m) additional time overhead. Hence, the second execution
can be performed in O(m) time, i.e., linear time.

Section 6 contains results of timing experiments with this technique.

15

o

L)1)

[

Il

SION J

Ui

wis

L

(0.sm) e (3,60) e (4,130) }— NIL
0 1 2 3 4 5 6
(O,sm) e (3,60) e (5,62) > (4,130) = NIL
0 1 2 3 4 5 6

Figure 4: Example of the indexed linked list before and after inserting (5,62)

16

3.1 Proof of correctness

We wish to prove that the two algorithms given above constitute a certification trajl solution to the
SHORTEST-PATH problem, i.e., that the functions Fi(d) and F3(d, t) defined by these algorithms

— satisfy Definition 2.2. First, we consider the problem of evaluating a sequence of the above data
structure operations.

Definition 5.2 Let D be the set of finite sequences of the data structure operations defined above,
Let S be the set of finite sequences of answers to data structure operations. Let P be the relation

:= (d,s) where d € D'and s ¢ S, and s is the sequence of answers resulting from executing the
operations d starting with the empty set. '

Note that we are examining all finite sequences of data structure operations, not just “legal”
ones. That is, may attempt to perform an insertion with an item number already in use, attempt
to perform deletion on an item number not being used, etc. We assume that if one of these “illegal”
.« OPerations is attempted, the operation will output “error” and terminate processing. Thus, we can
i_f: define the answer sequences for these “illegal” sequences.

Definition 5.3 Let Fi(d) be defined by the result of executing the operations on any of the stan-
=2 dard data structures described above, with the insert(i, z,) and changekey(t, z, k) operations mod-
ified to output trail information. Let F3(d,t) be defined by the result of executing the operations
.. using the indexed linked kst implementation described above.

= Theorem 5.4 Fi(d) and Fy(d,t) meet the conditions of Definition 2.2 (that is, Fi(d) and Fy(d,1)
constitute a certification trail solution for P). A

Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.
Part 1: The first conditjon we must verify is that for all d € D there exists s € S and there
exists ¢ € T such that F(d) = (s,t) and Fy(d,t) = s and (d,s) € P. Let (s,1) = Fy(d). The
modifications of the data structure operations that produce trail output do not affect how the data
structure is maintained. Proofs of correctness for the standard data structures are well known, so
~ We may assume (d, s) € P. We must demonstrate that Fy(d,t)=s.)
- This may be proven by showing that after each operation that modifies the set A, the elements
stored in the indexed linked list (our implementation) correspond to the elements in the set 4 (the
abstract definition). We must also demonstrate that if this relationship is maintained, then correct
output is generated by operations that generate output.
To demonstrate this, we show that each operation maintains the following invariants.

U

RIS

i. If the pair (i,z)isin AU (0, “smallest™), then the i-th pointer in the array of pointers points
to the list node containing (i,x).

i
i

LIl
e

ii. If, for some i, there is no pair in h with item number { then the i-th pointer is nil.

ili. The list nodes are in ascending order.

iv. Every list node is pointed to by some pointer in the array. (Together with the first condition,
this implies that it is pointed to by exactly one pointer from the array).

11

e
11

E3 The first two conditions assert that the indexed linked list and the set A contain the same
= elements (ignoring the special list head element in the linked list). The last two invariants allow us
. to demonstrate that the linked list operations function correctly.

p

1

17

te o

I

Clearly each of these conditions is true before the first operation is performed (the set of pairs
is empty, all pointers except the 0-th are nil, and (0, “smallest”) is the only list node).

Assume that the above conditions are satisfied after the first k operations, and that the output
generated by any of the first k operations is correct. We claim that the invariants will will remain
satisfied after the (k+ 1)-st operation, and that if the (k+1)-st operation generates output, it will be
correct. Let s(k + 1) denote the output produced by the (k + 1)-st operation (where Fi(d) = (s,1)).

Consider each possible operation. For brevity, we omit details for “illegal” operations, i.e., those

that violate the precondition of the operation. Similarly, we omit details of the special case of
“smallest” being read from the trail.

insert(7, z, k) The trail t contains the item number J of the predecessor of (i, z). Call the predecessor
(4,¥). By assumption, the i-th pointer is nil before the insert. If not, this operation outputs
“error™ and execution halts. Since the indexed linked list correctly represents k at this point,
this agrees with the result returned by Fi(d), i.e., s(k + 1) = “error”. After the insertion is
performed, the i-th pointer is set to the new node containing (3, z), so the first condition is
satisfied. No other nodes are added to the list, so the second condition will remain true. The
third condition is satisfied since (j, y) is now the immediate predecessor of (i,z). Since no
other pointer in the array has been changed, the fourth condition is still true.

delete(i, k) This operation sets the i-th pointer to nil, and removes the node containing (i,z)
from the list. This satisfies the second invariant. Deleting a node cannot violate the third

invariant. Since no other nodes are removed and no other pointers are changed, the first and
fourth invariants remain satisfied.

deletemin(h) By assumption, the nodes are currently in ascending order. Thus, the minimum
element in A must correspond to the node following the special list head node, call the pair it
contains (i,z). This pair is the correct output for this operation. As with delete, the above
four conditions remain true after this node js removed and the i-th pointer set to nil.

changekey(i, z,h) We have implemented changekey(i, z, k) as an insertion followed by a deletion.
Since both of those preserve the invariants, changekey(i, z, k) must do so as well.

member(i,h) By assumption, the indexed linked list correctly represents h before this operation,
so the output of this operation will be correct. Since this operation does not change the set
or the indexed linked list, the invariants remain satisfied.

predecessor(i, k) By assumption, the indexed link list correctly represents h, and furthermore it is
currently in sorted order. Thus, the list element preceding the node containing (i,z) is the

predecessor. Since this operation changes neither k nor the indexed linked list, the invariants
remain satisfied.

This demonstrates that the first condition of Definition 2.2 is satisfied.

Part 2: The second condition is for all d € D and for all t € T either (F3(d,t) = s and
(d,s) € P) or F3(d,t) = error. Intuitively, this states that if F3(d,t) is passed an arbitrary trail, it
either outputs a correct answer, or it outputs “error”. We prove an even stronger condition. Let
teorrect be the trail returned by Fy(d), i.e., F;i(d) = (8y teorrect). Then either tcorrect i85 a prefix of ¢,
or F3(d,t) = error.

If tcorrect is a prefix of ¢t, then we are done. The algorithm describing F3(d,t) does not examine
any part of the trail after t.,,,.q, 50 F(d,t)=s. '

18

y
L

e
i

1kS

i
i

i

If teorrect is NOt a prefix of ¢, let p be the position at which they first differ. Let O be the number
of the operation that uses the trail data at p. Then operation O is either an insert(i, z,h) or
changekey(i, z, h) operation. If it is an insert operation, then Zcorrect contains the item number of
the predecessor of (i, z). Since ¢ contains a different value, call it j, at this location, the insert(i,z,h)
operation will fail one of it's three checks. Either j will not be valid item number, or the j-th
pointer will be nil, or the pair (j,y) will not be the predecessor of (i,z). The argument for the
changekey(i, z, h) operation is essentially the same.

Thus, the second condition is satisfied.

Therefore, Fy(d) and Fj(d,t) are a certification trail solution to P, the problem of evaluating
data structure operations. |}

Definition 5.5 Let D be the set of finite graphs G = (V, E) with edge weights consisting of positive
integers. Assume the indices are numbered 1 through n. Let S be the set of finite ordered tuples
of positive integers. Let P be the relation that associates each graph with the tuple consisting of
the minimum path lengths to each vertex. Let SPy(d) be the function defined by the SHORTEST-
PATH algorithm with the data structure defined for the first execution. Let SP;(d, t) be the function
defined by the SHORTEST-PATH algorithm using the indexed linked list implementation.

Corollary 5.6 SP;(d) and SP,(d,t) constitute a certification trail solution for P.

Proof: If SP,(d) = (s,t), then the correctness of Dijkstra’s algorithm implies that (d,s) €
P. The algorithms that compute SP;(d) and SP;(d,t) are the same except for data structure
implementation. Theorem 5.4 implies that if these algorithms generate the same data structure
operations, then the same sequence of answers will be generated. Thus, to demonstrate that
SPy(d,t) = s, it must be shown that the same sequence of data structure operations is generated
by both algorithms. Examination of SHORTEST-PATH indicates that the k-th data structure
operation to be performed is dependent only on the input and the result of previous data structure
operations. For example, at line 9, either an insert(i,z,h) or a changekey(i, z,h) is performed,
depending on the result of a member(i,h) operation. The input graph d is identical for both
algorithms, thus the first data structure operation performed must be the same. Assume that the
first k operations performed by both algorithms are identical. Then, by Theorem 5.4, the answers
to those operation will be the same. Since the (k + 1)-st operation depends only on the input and
the results of the previous k operations, it must also be the same for both algorithms. Therefore
the same sequence of data operations is performed in both algorithms, so SP;(d,t) = s.

The proof that the second condition holds is the same as for Theorem 5.4. Either the input trail
t contains the “correct™ trail as a prefix, or one of the data structure operations will fail, resulting
in an “error” output. |

One point has been glossed over in the above proof. In the SHORTEST-PATH algorithm results
of deletemin(h) are not output nor are they stored in the certification trail. It might be possible for
incorrect answers to be returned by deletemin(h) operations while still producing correct shortest
paths and lengths. The second execution of the SHORTEST-PATH algorithm will not detect this
since the correct output is produced. By proving that the answers to deletemin(h) operations are
the same, we have proven more than strictly required.

6 Experimental Data on Certification Trails

We have performed extensive timing experiments on several basic and well-known problems, includ-
ing the ones described in this paper. Algorithms for solving these problems were implemented, both

19

A

]

r

with and without the use of certification trails. Timing data was collected on both the certification
trail solutions and the basic solutions. The following tables summarize these results.

Size | Basic Algorithm First Execution Second Execution | Speedup | Percent

(Also Generates Trail) (Uses Trail) Savings
5000 0.61 0.62 0.07 8.73 43.62
10000 1.33 1.34 0.14 9.56 44.54
25000 3.68 3.68 | 0.36 10.22 | 45.12
50000 7.68 7.74 0.71 10.75 44.94
100000 16.23 16.30 1.43 11.35 45.39
200000 33.93 34.37 2.84 11.94 45.16

Table 2: Convex Hull

Size Basic Algorithm First Execution Second Execution | Speedup | Percent
(Also Generates Trail) (Uses Trail) Savings
10000 0.28 0.30 0.04 7.00 39.29
50000 1.80 1.90 0.19 9.47 41.94
100000 3.96 4.08 0.41 9.66 43.31
500000 23.95 24.69 2.14 11.19 43.99
1000000 50.23 51.57 4.38 11.47 44.31

Table 3: Sort

Size Basic Algorithm First Execution Second Execution | Speedup | Percent

, (Also Generates Trail) (Uses Trail) Savings
100,1000 0.04 - 0.05 0.02 2.00 12.50
250,2500 0.15 0.16 0.06 2.50 26.67
500,5000 0.31 0.33 0.11 2.82 29.03
1000,10000 0.70 0.76 0.23 3.04 29.29
2000,20000 1.58 1.67 045 3.51 32.91
2500,25000 2.06 2.15 0.55 3.75 34.47

Table 4: Shortest Path

The timing information was gathered on Sun SPARCstation ELC with 16MB of RAM. The
system was run as a standalone machine in single user mode during timing experiménts.

Much of the data presented in the timing table is essentially self-explanatory relative to the
certification trail technique and algorithms considered. However, a brief discussion of the table
entries is appropriate.

The column labelled Basic Algorithm contains timing data which gives the execution time of the
algorithm in producing the output without the generation of the certification trail. All timing data
is listed in seconds.

20

L

The First Ezecution column gives the execution time of the algorithm in producing the output
with the additional overhead of generating the certification trail.

The Second Erecution column gives the execution time of the algorithm in producing the output
while using the certification trail.

The Speedup column is the ratio of the run times of the Basic Algorithm and the Secondary
Execution. One reason this figure is important is that it is possible for the two algorithms to run in
different environments (different hardware, programming language, etc). A high speedup indicates
that less powerful hardware or a higher level language (with associated overhead) may be sufficient
for the second execution.

The Percent Savings column records the percentage of the execution time savings which is gained
by using the certification trail method as compared to 2-version programming approach. The time
required for a 2-version programming approach was estimated by doubling the time reported in the
Basic algorithm. This assumes that both versions take approximately the same amount of time to
execute.

In addition to the tables, the timing information for the convex hull algorithm is plotted in
Figure 5. Plots for the other two examples are similar.

Examination of the data collected for the convex hull algorithm indicates that:

o The overhead in generating the certification trail is very small, less than 2% of the running
time of the basic (no certification trail) algorithm.

o The second execution is very fast, achieving an order of magnitude speedup for larger input
sizes. This suggests that a single “second algorithm” process could easily handle the output
generated by several “first algorithm” processes running in parallel. Alternately, the high
speedup would allow the second execution to be run on lower performance (and hence less
expensive) hardward. Finally, the large speedup and reduced code complexity may make it
possible to take advantage of a formally verifiable language (which may require significant
overhead) in implementing the second algorithm.

The data for sorting indicates that the certification trail also requires very low overhead and
results in a large speedup. For the shortest path problem the overhead is still very low, and the
speedup, while not as dramatic as for the first two problems, is still quite respectable.

7 Comparison With Other Techniques

The certification trail approach shares similarities with other valuable fault tolerance and fault
detection techniques that have been previously proposed and examined, but in each case there are
significant and fundamental distinctions. These distinctions are primarily related to the generation
and character of the certification trail and the manner in which the secondary algorithm uses the
certification trail.

First consider the important and useful technique called N-version programming [9, 3]. When
using this technique N different implementations of an algorithm are independently executed with
subsequent comparison of the resulting N outputs. There is no relationship among the executions of
the different versions of the algorithms other than that they all use the same input; each algorithm
is executed independently without any information about the execution of the other algorithms. In
marked contrast, the certification trail approach allows the primary algorithm to generate a trail
of information which can be read by the secondary algorithm. The advantages of utilizing this
additional information are shown in the body of this paper. In effect, N-version programming can
be thought of relative to the certification trail approach as the employment of a null trail.

21

ll [\|m
il il

I

il

] i SR {HIVEE Pt P

Time (seconds)

35 I | { 1 1 1 | { I

30

25

N
o
|

-t
16}
I

10 |-

Basic Algorithm —

Generate Trail -----
Use Trail -----

5} _
0 S DR R 1 1 1] 1 1

O 20 40 60 80 100 120 140 160 180 200
Number of Input Points (Thousands)

Figure 5: Convex Hull Run Times.

Another valuable technique, known as the recovery block approach [2, 18, 21], was proposed by
— Randell. It yses acceptance tests and alternative procedures to produce what is to be regarded as

— some informal sense for correctness. The rigor, completeness, and nature of the acbeptance test
is left to the program designer, and many of the acceptance tests that have been proposed for
Use tend to be somewhat straightforward [2). When using certification trails jt is clearly possible
— to combine the second execution and the comparison test to yield a program which certifies the
correctness of the output of the first execution. Unlike an acceptance test this certifier must satisfy
strict formal properties of correctness. Also note that the certification trajl technique emphasizes

|
[d
-2
o
Y
=)
Y
=
=
[
!<
Q
=~
3
=
®
-y
™
g
=]
oq
e
=
2]
=3
|-
.
o
-y
Y
Conal
[]
g
(4]
[ad
[~
®
o]
o
-
fag
<
=]
o0
]
-y
g
(=¥
(=W
8
=]
[«
-
-
o,
<
w
&
«

of recovery blocks and certification trails.
- Algorithm-based fault tolerance (15, 17, 19] uses error detecting and correcting codes for perform-

|
=
=]
[~ %
I
=]
®
-]
L aal
&
(=}
fa)
[¢°]
-y
Y
fnd
(=]
=
w
[=]
—
[ad
=
o
&
[=}
la)
ot
=a
B
o
)
o
=2
o
R
[1+]
(=9
Ul
]
3
=
=]
Lo
—
S
[ad
g
B
o
£
=23
A
1Y
=
Q
=]
wm
=)
(73
oy
g

I
[=]
[=]
3
g
=]
-\
fal
(=]
=
Q
=
a
=]
8

©
=
Lo
Y
fadl
=]
=]
B
a
]
]
=]
]
»n
&
=
-
o
E
3
o

= work has been followed by a burst of activity in this general area (12, 7, 25, 8, 4]. Each of these

= Papers, however, describes work which differs significantly from the work we present. A program
checker is an algorithm which checks the output of another algorithm for correctness. An early

- example of a program checker is the algorithm developed by Tarjan (23] which takes as input a

= graph and a supposed minimum spanning tree and indicates whether or not the tree actually is a
minimum spanning tree.

E2 The Blum-Kannan program checking method differs from the certification trail method in two

= important ways. First, the checker is designed to work for a problem and not a specific algorithm.
That is, the checker design is based on the input/output specification of a problem and no assump-

—(i.e., the certification trail) which is considered to be usefu] jn the checking/verification process. By
_ exploiting this capability it is sometimes possible to design certification trajl solutions which allow
i _faster checking than Blum-Kannan program checkers. Of course, these faster solutions are more

&2 The second important difference concerns the number of times that the program which is being
checked is executed. In the Blum-Kannan approach the program may be invoked a polynomial

23

i1
1

“H
” ‘ I

‘
TR RO |

Gl

w. b

number of times. In the certification trail approach the program is run only once. Thus, the overall
time complexity of the checking process can be significantly larger for Blum-Kannan checkers.

A third less important difference stems from the fact that Blum-Kannan checkers are defined
in a more general probabilistic context. Certification trails are currently defined only for deter-
ministic programs and checkers. However, it is clearly possible to define them in the more general
probabilistic context.

Other work has been done to extend the ideas of Blum-Kanran to give methods which allow
the conversion of some programs into new programs which are self-testing and self-correcting [12,
7). However, these methods are also based on treating programs as black boxes and thus have
limitations similar to Blum-Kannan program checkers. A recent paper by Blum et al. (8] concerns
checking the correctness of memories and data structures. The results described in that paper
differ from our work using abstract data types in one central way. The checkers that they design
are tightly constrained in memory usage. Typically, they use only O(log(n)) storage to check data
structures of size O(n). Our results do not place space constraints on the algorithm used to certify
the data structure. Without a space constraint we are able to certify abstract data types such as
priority queues which are more complex than the data structures that they check, i.e., stacks and
queues. Also, we are able to achieve a speed up in the checking process and they are not.

Babai, Fortnow, Levin and Szegedy [4] present methods which appear to allow remarkably fast
checking, i.e., in polylogarithmic time. Their approach has some similarities to the methods we
Propose. Both methods modify original algorithms to yield new algorithms which output additional
information. We refer to this additional information as a certification trail and they refer to this
information as a witness. In our case we are interested in modified algorithms which have the same
asymptotic time complexity as the original algorithm. Indeed, the modified algorithm should be
slowed down by at most a factor of two. In (4] the modified algorithm is slowed down by more than
any fixed multiplicative factor. Specifically, if the original algorithm has a time complexity of o(T)
then the modified algorithm has a time complexity of O(T'*¢). Note that in practice the ¢ cannot
be too small because its inverse appears in the exponent of the checker time complexity. Another
difference between our methods is the fact that their method requires that the input and output
be encoded using an error-correcting code. The encoding process takes O(N1*¢) time for strings
of length N. However, many of the checkers we have developed take only linear time so the cost
of simply preparing to use their method appears to be too great in some cases. It is also necessary
to decode the output after the check. Lastly, we note that Fortnow has stated that their result is
currently not practical [24).

8 Generalization and Future Research Areas

The experimental timing data on certification trails indicates that this technique is of great practical
value as well as of theoretical interest. Furthermore, the techniques illustrated are applicable to a
wide range of problems, especially the certification of Abstract Data Types described in the shortest

path example. There are many areas of interest for future exploration, a few of which are described
below. ’

8.1 Certified Data Structure Libraries

It is apparent that the certification trail technique described for the SHORTEST-PATH program
may be used for a variety of problems. Since the certification trail is produced and used by abstract
data type operations, the technique may be used with any algorithm that can be implemented in
terms of those abstract data types. Creating a library of such “certified data types” enables

24

BRI)18

!

!

i

s

o
i

L Jine

L

i

it

L]
il w

{

programmers to create fault tolerant programs without having to be familiar with the certificatjon
trail technique. Object oriented programming appears to be well suited to this task.

A possible objection to this is that it provides fault detection only for the data structure imple-
mentation, since the surrounding code is simply reused. Furthermore, the data structure imple-
mentation is likely to come from library code, and hence be highly reliable. In answer to this note
that:

* In many algorithms, the code using the data structure is much simpler than the code imple-
menting the data structure.

¢ Although the example above illustrated reuse of using the data structures, it is certainly
possible for this code to be developed separately for the first and second execution programs.

¢ Errors are often found even in code that has been in use for a long period of time. The added
confidence of using this technique may be desirable even for library code.

¢ Even if the library code is highly reliable, the certification trail can be helpful in detecting
errors caused by hardware problems.

¢ Library code may have to be tuned or even rewritten to meet for a particular application or
environment, partially negating the claim of using well-tested code.

Even if fault detection is not an issue, the certification trail technique is useful during program
testing and debugging. Input may be automatically generated and processed. If the output of the
first and second executions differ or an error is otherwise flagged, the input set is flagged. This
reduces the need to otherwise compute output for selected input and enables both more and larger
sets of input to be processed. 2-version programming may be used during debugging in a similar
manner, however certification trails have the advantage of reduced overhead, allowing more test
cases to be run, a reduction in the hardware required for testing, or both.

8.2 Almost-concurrent execution of the certification trail

In the above discussion and examples, the certification trail programs have been executed serially,
i.e., we do not run the second execution until after first execution completed. Actually, except for
sorting, the two executions in the examples above can be run almost-concurrently. The “second”
execution simply reads the information from the certification trail as it becomes available. The two
programs will finish nearly simultaneously, the difference being in the time after the last element
is read from or written to the certification trail.

8.3 Continuing after an error

A possible extension to the use of certification trails is to attempt to continue the second execution
after an error s detected. Consider the shortest path example using abstract data types. In
that example, the second execution used an indexed linked list that performed each operation in
constant time by using the certification trail from the first execution. Suppose that an error had
been detected during the second execution. Rather than simply aborting, it may be possible to
continue execution. This could be done by

¢ Reorganizing the existing set into some other data structure (such an AVL tree, red-black
. tree, etc.) that allows efficient operation without a certification trail.

25

Ll

il

LG

il

£

Lis

1
|

it

|

Ll

i

LR]
[

¢ Continuing to use the indexed linked list and ignoring the rest of the certification trail. Note
that this would result in some operations requiring more time.

¢ Continuing to use the indexed linked list and attempting to use the certification trail for future
operations. This may be possible if the error that occurred has sufficiently “local” effect. For
example, if part of a tree structure is corrupted during the first execution, it is still possible
that operations involving other parts of the tree will be performed correctly.

On a related topic, research has been done on “self-correcting™ data structures in which enough
redundancy is built into a data structure so that it may be reconstructed if part of it is corrupted.
Using certification trails with such 'structures could provide an efficient detector for corruption of
the data structure.

References

[1] Adel’son-Vel'skii, G. M., and Landis, E. M., “An algorithm for the organization of informa-
tion”, Soviet Math. Dokl., pp. 1259-1262, 3, 1962.

[2] Anderson, T., and Lee, P., Fault tolerance: principles and practices, Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[3) Avizienis, A., “The N-version approach to fault tolerant software,” IEEE Trans. on Software
Engineering, vol. 11, pp. 1491-1501, Dec., 1985. .

(4] Babai, L., Fortnow, L., Levin, L., and Szegedy, M., “Checking computations in polylogarithmic
time, ” Proceedings of the 23rd ACM Symposium on Theory of Computing, pp. 21-31, 1991.

[5] Bayer, R., and McCreight, E., “Organization of large ordered indexes”, Acta Inform., pp
173-189, 1, 1972.

[6] Blum, M., and Kannan, S., “Designing programs that check their work”, Proceedings of the
1989 ACM Symposium on Theory of Computing, pp. 86-97, ACM Press, 1989.

[7] Blum, M., Luby, M., and Rubinfeld, R., “Self-testing/correcting with applications to numerical
problems,” Proceedings of the 22nd ACM Symposium on Theory of Computing, pp. 73-83, 1990.

(8] Blum, M., Evans, W., Gemmell P., Kannan, S., and Naor, M., “Checking the correctness of
memories,” Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science
pp- 90-99, 1991

[9] Chen, L., and Avizienis A., “N-version programming: a fault tolerant approach to reliability of
software operation,” Digest of the 1978 Fault Tolerant Computing Symposium, pp. 3-9, IEEE
Computer Society Press, 1978.

[10) Cormen, T. H., and Leiserson, C. E., and Rivest, R. L., Introduction to Algorithms McGraw-
Hill, New York, NY, 1990.

[11] Dijkstra, E. W., “A note on two problems in connexion with graphs,” Numer. Math. 1, PP-
269-271, Sept., 1959.

(12] Gemmell, R., Lipton, R., Rubinfeld, R., Sudan, M., and Wigderson, A., “Self-
testing/correcting for polynomials and for approximate functions,” Proceedings of the 23rd
ACM Symposium on Theory of Computing, pp. 32-42, 1991.

26

“-f'
— N

(13] Graham, R. L., “An efficient algorithm for determining the convex hull of a planar set”,
Information Processing Letters, pp. 132-133, 1, 1972,

(14] Guibas, L. J., and Sedgewick, R., “A dichromatic framework for balanced trees”, Proceedings

of the Nineteenth Annual Symposium on Foundations of Computing, pp. 8-21, IEEE Computer
— Society Press, 1978.

(15] Huang, K.-H., and Abraham, J., “Algorithm-based fault tolerance for matrix operations,”

= IEEE Trans. on Computers, pp. 518-529, vol. C-33, June, 1984.
(16] Johnson, B., Design and analysis of fault tolerant digital systems Addison-Wesley, Reading,
MA, 1989.
[17] Jou, J.-Y. and Abraham, J. “Fault tolerant FFT networks,” Dig. of the 1985 Fault Tolerant
— Computing Symposium, pp. 338-343, IEEE Computer Society Press, June, 1985.
B (18] Lee, Y.H. and Shin, K.G., “Design and evaluation of a fault-tolerant multiprocessor using
.- hardware recovery blocks,” JEEE Trans. Comput., vol. C-33, PP. 113-124, Feb. 1984,

(19] Nair, V., and Abraham, J., “General linear codes for fault-tolerant matrix operations on
— Processor arrays,” Dig. of the 1988 Fault Tolerant Computing Symposium, pp. 180-185, June,

= 1988.
(20] Preparata F. P., and Shamos M. 1., Computational geometry: an introduction, Springer Verlag,
== New York, NY, 1985.
=
[21] Randell, B., “System structure for software fault tolerance,” IEEE Trans. on Software Engs-
neering, vol. 1, Pp. 220-232, June, 1975.
= [22] Siewiorek, D., and Swarz, R., The theory and practice of reliable design, Digital Press, Bedford,
_ MA, 1982. .
< [23] Tarjan, R. E., “Applications of path compression on balanced trees”, J. ACM, pp. 690-715,
Oct., 1979.
& [24] Paul Wallich, “Crunching Epsilon,” Scientific American, PP. 22-24, Jan., 1993
_. [25] Andrew Chi-Chih Yao, “Coherent Functions and Program Checkers,” Proc. 22 ACM Symp. of
= Theory of Computing, pp. 84-94.

I

)

L]
i M\Iii

|
i |

=3

it

o
PRNRIFN

[

Experimental Evaluation of the
Certification-Trail Method

Gregory F. Sullivan,! Dwight S. Wilson,? Gerald M. Masson,>
Mamoru Itoh,* Warren W. Smith, Jonathan S. Kay®

Abstract

Certification trails are a recently introduced and promising
approach to fault-detection and fault-tolerance [1, 2, 3, 4]. In
this paper, we report on a comprehensive attempt to assess ex-
perimentally the performance and overall value of the method.
The method is applied to algorithms for the following problems:
huffman tree, shortest path, minimum spanning tree, sorting,
and convex hull. Our results reveal many cases in which an
approach using certification-trails allows for significantly faster
overall program execution time than a basic time redundancy-
approach.

We also examine algorithms for the answer-validation prob-
lem for abstract data types. This kind of problem was originally
proposed in [3] and provides a basis for applying the certification-
trail method to wide classes of algorithms. We implemented and
analyzed answer-validation solutions for two types of priority
queues. In both cases, the algorithm which performs answer-
validation is substantially faster than the original algorithm for
computing the answers.

Next we present a probabilistic model and analysis which en-
ables comparison between the certification-trail method and the
time-redundancy approach. The analysis reveals some substan-
tial and sometimes surprising advantages for the certification-
trail method.

N94- 36065
1785 7

A |00
P

Dept. of Computer Science, Johns Hopkins Univ., Baltimore, MD 21218

I

i

L.
)

'Research partially supported by NSF Grants CCR-8910569 and CCR-8908092 and an
IBM Technology Interchange Program Grant.

2Research partially supported by NSF Grant CCR-8910569 and an IBM Technology
Interchange Program Grant.

*Research partially supported by NASA Grant NSG 1442 and an IBM Technology
Interchange Program Grant.

*Visiting Scholar, Matsushita Electronic Components Co.

®Currently at Dept. of Computer Science, University California San Diego

m"!:’ e
ul b v

]

1
i

[

{11
ihLE[HHmL‘

Finally we discuss the work our group has performed on the
design and implementation of fault injection testbeds for experi-
mental analysis of the certification trail technique This work em-
ploys two distinct methodologies: software fault injection (mod-
ification of instruction, data, and stack segments of programs on
a Sun Sparcstation ELC and on an IBM 386 PC) and hardware
fault injection (control, address, and data lines of an Motorola
MC68000-based target system pulsed at logical zero/one values).
Our results indicate the viability of the certification trail tech-
nique. We also believe the tools we have developed provide a
solid base for additional exploration.

Keywords: Software fault tolerance, certification trails, error
monitoring, design diversity, data structures.

1 Introduction

Certification trails are a recently introduced and promising approach to
fault-detection and fault-tolerance [1, 3]. In this paper, we report on a com-
prehensive attempt to assess experimentally the performance and overall
value of the method. We have implemented several fundamental algorithms
together with versions of the algorithms which generate and utilize certifica-
tion trails. Specifically, algorithms for the following problems are analyzed:
huffman tree, shortest path, minimum spanning tree, sorting, and convex
hull. Our results reveal many cases in which an approach using certification
trails allows for significantly faster overall program execution time than a
basic time redundancy approach.

We also examine algorithms for the answer-validation problem for ab-
stract data types. This kind of problem was originally proposed in {3] and
provides a basis for applying the certification-trail method to wide classes of
algorithms. For this paper we implemented and analyzed answer-validation
solutions for two abstract data types. The first solution is for a simplified
priority queue which allows insert, min and deletemin operations, and the
second solution is for a priority queue which allows insert, min, delete and
deletemin operations. In both cases, the algorithm which performs answer-
validation is substantial faster than the original algorithm for computing the
answers.

This paper next presents a simple probabilistic model and analysis which
enables comparison between the certification-trail method and the time-

-

B)

!

redundancy approach. The analysis shows that when the certification-trail
method has a smaller execution time than the time-redundancy approach
it yields strictly superior performance. This means the method has both
a a smaller probability of error and a smaller probability of undetected
error. Surprisingly, the analysis also reveals the intriguing result that the
certification-trail method often can display superior performance even when
the method has the same execution time or a longer execution time than the
time-redundancy approach. This superior behavior stems from the typical
assymetry of the execution times of the first and second executions in the
certification-trail method.

The paper next discusses the work our group has performed on the design
and implementation of fault injection testbeds. This work employs two
distinct methodologies: software fault injection and hardware fault injection.
The software fault injection tool is similar to an interactive debugger but
more accurately can be considered an interactive bugger. It allows programs
to be halted and faults to be injected by direct modification of the stack,
data and instruction segments of a program. Output can then be captured
and characterized.

The hardware fault injector is based on injecting faults into an operating
microprocessor. The injection is performed by explicitly setting one or more
pins of the microprocessor to logical zero and/or logical one values. The
timing and duration of the pin setting is under control of a supervisory
processor. The testbed also includes a multi-processor system. This system
consists of three processors which are connected to one another pairwise by
shared banks of dual ported memory. We plan to use this system to conduct
evaluation of systems which utilize concurrent execution of algorithms using
the certification-trail method.

2 Introduction to Certification Trails

To explain the essence of the certification-trail technique for software fault
tolerance, we will first discuss a simpler fault-tolerant software method. In
this method the specification of a problem is given and an algorithm to solve
it is constructed. This algorithm is executed on an input and the output is
stored. Next, the same algorithm is executed again on the same input and
the output is compared to the earlier output. If the outputs differ then an
error is indicated, otherwise the output is accepted as correct. This software
fault tolerance method requires additional time, so-called time redundancy

Inmv o
bl

m
i

L ifH

!

I { IR

[32, 52]; however, it requires no additional software. It is particularly valu-
able for detecting errors caused by transient fault phenomena. If such faults
cause an error during only one of the executions then either the error will be
detected or the output will be correct. The second possibility, of undetected
faults, occurs when the output of the execution is unaffected by the faults.

A variation of the above method uses two separate algorithms, one for
each execution, which have been written independently based on the problem
specification. This technique, called N-version programming [16, 12] (in
this case N=2), allows for the detection of errors caused by some faults
in the software in addition to those cause by transient hardware faults and
utilizes both time and software redundancy. Errors caused by software faults
are detected whenever the independently written programs do not generate
coincident errors.

The certification-trail technique is designed to obtain similar types of
error-detection capabilities but expend fewer resources. The central idea,
as illustrated in Figure 1, is to modify the first algorithm so that it leaves
behind a trail of data which we call a certification trail. This data is chosen
so that it can allow the the second algorithm to execute more quickly and/or
have a simpler structure than the first algorithm. As above, the outputs of
the two executions are compared and are considered correct only if they
agree. Note, however, we must be careful in defining this method or else
its error detection capability might be reduced by the introduction of data
dependency between the two algorithm executions. For example, suppose
the first algorithm execution contains an error which causes an incorrect
output and an incorrect trail of data to be generated. Further suppose
that no error occurs during the execution of the second algorithm. It still
appears possible that the execution of the second algorithm might use the
incorrect trail to generate an incorrect output which matches the incorrect
output given by the execution of the first algorithm. Intuitively, the second
execution would be “fooled” by the data left behind by the first execution.
The definitions we give below exclude this possibility. They demand that
the second execution either generate a correct answer or signal that an error
has been detected in the data trail.

3 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and
discuss some aspects of its realizations and uses.

5

oy

First Execution

Certification Trail

Duplicate Compare

Second Execution

Figure 1: Certification trail method.

Definition 3.1 A problem P is formalized as a relation, i.e., a set of ordered
pairs. Let D be the domain (that is, the set of inputs) of the relation P and
let S be the range (that is, the set of solutions) for the problem. We say an
algorithm A solves a problem P iff for all d € D when d is input to A then
an s € S is output such that (d,s) € P.

Definition 3.2 Let P : D — S be a problem. A solution to this problem
using a certification trail consists of two functions Fy and F, with the fol-
lowing domains and ranges F; : D - S x T and F, : D x T — S U {error}.
T is the set of certification trails. The functions must satisfy the following
two properties:

(1) for all d € D there exists s € S and there exists ¢ € T such that
Fy(d) = (s,t) and F(d,t) = s and (d,s) € P
(2)foralde D and forallt € T
either (F3(d,t) = s and (d, s) € P) or F3(d,t) = error.

We also require that F} and F; be implemented so that they map ele-
ments which are not in their respective domains to the error symbol. The
definitions above assure that the error-detection capability of the certification-
trail approach is similar to that obtained with the simple time-redundancy
approach discussed earlier. (That is, if transient hardware faults occur dur-
ing only one of the executions then either an error will be detected or the
output will be correct.) It should be further noted, however, the examples
to be considered will indicate that this new approach can also save overall
execution time.

or Error

"
'

"
|

el

Ll

Throughout this section we have assumed that our method is imple-
mented with software, however, it is clearly possible to implement the method
with assistance from dedicated hardware. The degree of diversity or inde-
pendence achieved when using certification trails depends on how they are
used. A fuller discussion of this and of the relationship between certification
trails and other approaches to software fault tolerance is contained in the
expanded version of [1].

4 Generalized Priority Queue

Before we present our example algorithms which use certification trails we
must discuss the notion of an abstract data type. An abstract data type has
a well defined data object or set of data objects, and an abstract data type
has a carefully defined finite collection of operations that can be performed
on its data object(s). Each operation takes a finite number of arguments
(possibly zero), and some but not all operations return answers.

Some of the algorithms presented in the next section use the priority
queue abstract data type. In addition, later in this paper the answer-
validation problem for two variants of the priority queue are presented.
Therefore, we now describe the priority queue. The data consists of a set
of ordered pairs. The first element in these ordered pairs is referred to as
the item number and the second element is called the key value. Ordered
pairs may be added and removed from the set, however, at all times the item
numbers of distinct ordered pairs must be distinct. It is possible, though,
for multiple ordered pairs to have the same key value. In this paper the item
numbers are integers between 1 and =, inclusive. Qur default convention is
that ¢ is an item number, k is a key value and h is a set of ordered pairs.
A total ordering on the pairs of a set can be defined lexicographically as
follows: (i,k) < (#',k') iff k < k' or (k = k" and i <). The abstract data
types we will consider support a subset of the following operations.

member(¢) returns a boolean value of true if the set contains an ordered
pair with item number i, otherwise returns false.

insert(7, k) adds the ordered pair (i, k) to the set. We require that no other
pair with item number i be in the set.

delete(4) deletes the unique ordered pair with item number 7 from the set.
We require that a pair with item number i be in the set initially.

F I B b

.u
i

LB 1

|

!

(S
INT I

changekey(z, k) is executed only when there is an ordered pair with item
number ¢ in the set. This pair is replaced by (1, k).

deletemin (or deletemax) returns the ordered pair which is smallest (or
largest) according to the total order defined above and deletes this
pair. If the set is empty then the token “empty” is returned.

min (or max) returns the ordered pair which is smallest (or largest) accord-
ing to the total order defined above. If the set is empty then the token
“empty” is returned.

predecessor(7) returns the item number of the ordered pair which immedi-
ately precedes the pair with item number 7 in the total order. If there
is no predecessor then the token “smallest” is returned. We require
that a pair with item number ¢ be in the set initially.

If an operation violates one of the requirements described above then it is
considered to be ill-formed. Also, if an operation has the wrong number or
type of arguments it is considered to be ill-formed.

Many different types and combinations of data structures can be used
to support different subsets of these operations efficiently.

5 Examples of the Certification Trail Technique
with Timing Data

In this section we evaluate the use of certification trails for five well-known
and significant problems in computer science: the convex hull problem, the
minimum spanning tree problem, the shortest path problem, the Huffman
tree problem, and the sorting problem. We have implemented algorithms
for these problems together with other algorithms which generate and use
certification trails.

We provide a full description of the algorithm for the convex hull problem
which generates a certification trail and a full description of the algorithm
which uses that trail. This material has not appeared in our previous publi-
cations [1, 3]. Because of space considerations the discussion of three of the
other algorithms is abbreviated, but references to previous publications or
technical reports which describe the algorithms more fully are given. The
treatment of the sort algorithm is brief but is detailed enough for the inter-
ested reader to implement the certification-trail method.

1

0

Y
il

g

T

!
i

QT

[Ol

The algorithms we have choosen to implement are not always the al-
gorithms which have the smallest asymptotic time complexity. Often the
asymptotically fastest algorithms have large constants of proportionality
which make them slower on the data sizes we examined. We modified and
used some programs from major software distributions such as quicker-sort
from a Berkeley Unix distribution. Other algorithms were based on text-
book discussions. It should be stressed here that this research is exploratory
and we hope to further increase our corpus of algorithm and data-structure
implementations.

5.1 Systems used for timing data

We have collected timing data for the algorithms considered using a Sun
workstation, an IBM 386 PC and a Motorola 68000-based system.

The SUN machine utilized was a SPARCstation ELC with 16 MB of
RAM. The system was run as a standalone machine in single user mode
during the timing experiments. Timing data was obtained through the
getrusage() system call; the user times are reported in the data.

Some of the algorithms were also run on an MSDOS machine: a North-
gate 386/33 with 8MB of RAM. The programs were compiled using DJGPP,
DJ Delorie’s port of the GNU GCC compiler to MSDOS. This compiler uses
a DOS extender to allow programs to run in protected mode; thus nearly all
of the 8MB in the machine was available, thereby allowing data sets com-
parable in size to those used on the Sun. The programs required no change
to run under MSDOS, though the data generators required minor modifi-
cation because the drand48() family of random number generators was not
available.

Finally some of the algorithms were also run Motorola M68000-based
target system. In addition to the MC68000 microprocessor which served as
the cpu, the system was also was comprised of 512K bytes of RAM, 512
bytes of ROM, and numerous I/O modules to support serial and parallel
communication. A timer module is also included in the system which uses
the 4Mhz clock as a reference so as to provide execution time data for
experiments. This system is discussed in Section 10 relative to fault injection
experiments.

DR INTRE |

i

ifd

b

5.2 Explanation of timing data table entries

Much of the data presented in the timing table is essentially self-explanatory
relative to the certication trail technique and algorithms considered. How-
ever, a brief discussion of the table entries is appropriate.

The Basic Algorithm timing data refers to the execution time of the
algorithm in producing the output without the generation of the certification
trail. All timing data is listed in seconds.

The Generate Certif. timing data refers to the execution time of the al-
gorithm in producing the output with the additional overhead of generating
the certification trail.

The Use Certif. timing data refers to the execution time of the algorithm
in producing the output while using the certification trail.

The Compare timing data refers to the time necessary to compare the
outputs from both two Basic Algorithm runs or from a Generate Certifi-
cation Trial run and a Use Certification Trail run. (Obviously, the value
of the comparison would be the same in each case.) For the some of the
experiments, the data was too small to calculate and is therefore listed as
0.00. In other experiments, the comparison was included in the algorithm
execution timing data and therefore is not separately listed.

The Total Basic timing data is twice the Basic Algorithm timing data
plus the Comparison time (when available) so as to evaluate the classical
time-redundancy approach.

The Total Certif. timing data is the sum of the Generate Certif. timing
data and the Use Certif. data and Comparison data (when available) so as
to evaluate the certification trail approach.

The % Savings data is percentage of the execution time savings which is
gained by using the certification trail method as compared to the classical
time redundancy method.

For the Huffman tree data, the input size for the Huffman tree program
is the number of nodes. Each node is given a frequency, chosen uniformly
from the integers {1, 2, ..., n}. n was selected to be the number of nodes,
but in fact it’s value does not affect the running time of the algorithm. In
order for the algorithm to execute correctly, the sum of the frequencies must
not cause an arithmetic overflow. The certification trail method will detect
this.

For the minimum spanning tree and shortest path tables, there are two
numbers associated with the input size, the first is the number of vertices
in the graph, the second the number of edges. A graph with the required

edges is selected uniformly from the set of all such graphs, then tested for
connectedness. The algorithms will function regardless of connectedness,
but allowing graphs that are not connected would introduce undesirable
variation in the timing data.

For the convex hull tables, the input size is the number of points in the
data set. The points are chosen uniformly from the set of points with integer
coordinates between 0 and 30,000.

For the sorting tables, sorting was timed in two ways. The first set of
results were obtained by sorting integers. To generate a trail, an integer tag
is added to each input integer and an array of these pairs passed to the sort
function. After sorting, the "data” integers are placed in an array, and the
“tag” integers are placed on the certification trail. Thus, the sort call looks
the same as a normal sort function. The time to massage the data in this
manner is included in the cost of the call. This method resulted in only
a small speedup, because of the overhead involved in massaging the data,
and because the sort routine must swap pairs of integers instead of single
integers. The integers were chosen uniformly over the range 0 to 1,000,000.

The second method was to sort an array of pointers to structures. In this
case it was assumed that the structure contained a field that would serve
as the tag. The sort program needed only to fill in this field, and not copy
the structures to a second array. This method results in dramatic speedups.
Integer keys were used, though a more complex key will work as well (in
fact, a more complex key is very likely to increase the speedup achieved).

For the priority queue and generalized priority queue tables, the input
size n is the number of commands executed. The item numbers range from
1 to n (ie. there are as many item numbers as there are commands). The
commands are not chosen with equal probability, but rather the first n/2
are weighted toward insert operations while the second half are weighted
toward the other operations, the weightings remaining the same for all runs.
This weighting is necessary in order to force a large queue.

The timing data displayed in the tables should be considered not only
relative to the overall efficiencies of the certification trail method relative
to classical time redundancy but also relative to the probabilistic analysis
given in Section 9 in which we show that when the certification-trail method
has a smaller execution time than the time-redundancy approach it yields
strictly superior performance. This means the certification trail method has
both a a smaller probability of error and a smaller probability of undetected
error.

10

5.3 Convex Hull Example

The convex hull problem is a fundamental one in computational geometry.
Our certification trail solution is based on a solution due to Graham [24]
which is called Graham’s Scan. For basic definitions in computational ge-
ometry see the text of Preparata and Shamos[46]. For simplicity in the
discussion which follows we will assume the points are in so called general
position, e.g., no three points are colinear. It is not hard to remove this
restriction.

Definition 5.1 The conver hull of a set of points, §, in the Euclidean
plane is defined as the smallest convex polygon enclosing all the points.
This polygon is unique and its vertices are a subset of the points in §. It is
specified by a counterclockwise sequence of its vertices.

Figure 2(c) shows a convex hull for the points indicated by black dots.
The algorithm given below constructs the convex hull incrementally in a
counterclockwise fashion. Sometimes it is necessar